(2004•海淀區(qū))已知:如圖,在菱形ABCD中,E、F分別是BC、CD的中點.
(1)求證:△ABE≌△ADF;

(2)過點C作CG∥EA交AF于H,交AD于G,若∠BAE=25°,∠BCD=130°,求∠AHC的度數(shù).

【答案】分析:根據(jù)菱形的性質(zhì)可得AB=AD,∠B=∠D,BE=DF,利用SAS判定△ABE≌△ADF;由△ABE≌△ADF可得∠BAE=∠DAF=25°,從而可推出∠EAF的度數(shù),根據(jù)平行線的性質(zhì)可得到∠AHC的度數(shù).
解答:(1)證明:菱形ABCD中,AB=BC=CD=AD,∠B=∠D,
∵E、F分別是BC、CD的中點,
∴BE=DF.
在△ABE和△ADF中AB=AD,∠B=∠D,BE=DF,
∴△ABE≌△ADF(SAS).(6分)

(2)解:菱形ABCD中∠BAD=∠BCD=130°,
由(1)得△ABE≌△ADF,
∴∠BAE=∠DAF=25°.
∴∠EAF=∠BAD-∠BAE-∠DAF
=130°-25°-25°=80°.(9分)
又∵AE∥CG,
∴∠EAH+∠AHC=180°.
∴∠AHC=180°-∠EAH=180°-80°=100°.
∴∠AHC=100°.(12分)
點評:此題主要考查學生對菱形的性質(zhì)及全等三角形的判定方法的綜合運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2004•海淀區(qū))已知:在平面直角坐標系中,點O為坐標原點,點A的坐標為(0,2),以OA為直徑作圓B.若點D是x軸上的一動點,連接AD交圓B于點C.
(1)當tan∠DAO=時,求直線BC的解析式;
(2)過點D作DP∥y軸與過B、C兩點的直線交于點P,請任意求出三個符合條件的點P的坐標,并確定圖象經(jīng)過這三個點的二次函數(shù)的解析式;
(3)若點P滿足(2)中的條件,點M的坐標為(-3,3),求線段PM與PB的和的最小值,并求出此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2004•海淀區(qū))如示意圖,在平面直角坐標系中,O為坐標原點,點A是x軸的負半軸上一點,以AO為直徑的⊙P經(jīng)過點C(-8,4).點E(m,n)在⊙P上,且-10<m≤-5,n<0,CE與x軸相交于點M,過C點作直線CN交x軸于點N,交⊙P于點F,使得△CMN是以MN為底的等腰三角形,經(jīng)過E、F兩點的直線與x軸相交于點Q.
(1)求出點A的坐標;
(2)當m=-5時,求圖象經(jīng)過E、Q兩點的一次函數(shù)的解析式;
(3)當點E(m,n)在⊙P上運動時,猜想∠OQE的大小會發(fā)生怎樣的變化?請對你的猜想加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年北京市海淀區(qū)中考數(shù)學試卷(2)(解析版) 題型:解答題

(2004•海淀區(qū))已知:在平面直角坐標系中,點O為坐標原點,點A的坐標為(0,2),以OA為直徑作圓B.若點D是x軸上的一動點,連接AD交圓B于點C.
(1)當tan∠DAO=時,求直線BC的解析式;
(2)過點D作DP∥y軸與過B、C兩點的直線交于點P,請任意求出三個符合條件的點P的坐標,并確定圖象經(jīng)過這三個點的二次函數(shù)的解析式;
(3)若點P滿足(2)中的條件,點M的坐標為(-3,3),求線段PM與PB的和的最小值,并求出此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年北京市海淀區(qū)中考數(shù)學試卷(1)(解析版) 題型:解答題

(2004•海淀區(qū))如示意圖,在平面直角坐標系中,O為坐標原點,點A是x軸的負半軸上一點,以AO為直徑的⊙P經(jīng)過點C(-8,4).點E(m,n)在⊙P上,且-10<m≤-5,n<0,CE與x軸相交于點M,過C點作直線CN交x軸于點N,交⊙P于點F,使得△CMN是以MN為底的等腰三角形,經(jīng)過E、F兩點的直線與x軸相交于點Q.
(1)求出點A的坐標;
(2)當m=-5時,求圖象經(jīng)過E、Q兩點的一次函數(shù)的解析式;
(3)當點E(m,n)在⊙P上運動時,猜想∠OQE的大小會發(fā)生怎樣的變化?請對你的猜想加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(01)(解析版) 題型:選擇題

(2004•海淀區(qū))在△ABC中,∠C=90°,若cosB=,則sinA的值為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案