如圖,直線OC、BC的函數(shù)關(guān)系式分別是y1=x和y2=-2x+6,動點(diǎn)P沿路線0→C→B運(yùn)動.
(1)求點(diǎn)C的坐標(biāo),并回答當(dāng)x取何值時(shí)y1>y2?
(2)求△COB的面積.
(3)當(dāng)△POB的面積是△COB的面積的一半時(shí),求出這時(shí)點(diǎn)P的坐標(biāo).
分析:(1)由圖可知,點(diǎn)C是交點(diǎn),求兩條直線的交點(diǎn)坐標(biāo),就是由這兩條直線相對應(yīng)的一次函數(shù)表達(dá)式所組成的二元一次方程組的解;根據(jù)圖象可判斷出y1>y2時(shí),x的取值范圍;
(2)令y2=0,根據(jù)函數(shù)關(guān)系式可得出x的值,結(jié)合(1)中點(diǎn)C的橫坐標(biāo),根據(jù)三角形面積公式,求出即可;
(3)由題意可知,當(dāng)點(diǎn)P的縱坐標(biāo)是點(diǎn)縱坐標(biāo)的一半時(shí),△POB的面積是△COB的面積的一半,把y值分別代入y1=x和y2=-2x+6,求出x的值,即可求出點(diǎn)P的坐標(biāo).
解答:解:(1)由題意,列方程組
y=x
y=-2x+6

解得
x=2
y=2
,
∴點(diǎn)C的坐標(biāo)為(2,2),
∴當(dāng)x>2時(shí),y1>y2;   

(2)令y2=0,則-2x+6=0,
解得,x=3,
∴S△COB=
1
2
×3×2=3;

(3)∵△POB的面積是△COB的面積的一半,
∴點(diǎn)P的縱坐標(biāo)y=1,
把y=1分別代入y1=x和y2=-2x+6,
得,x1=1,x2=
5
2
,
∴點(diǎn)P的坐標(biāo)為(1,1)或(
5
2
,1).
點(diǎn)評:本題主要考查了一次函數(shù)圖象及交點(diǎn)、動點(diǎn)問題等,體現(xiàn)了數(shù)形結(jié)合思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線OC、BC的函數(shù)關(guān)系式分別是y1=x和y2=-2x+6,直線BC與x軸交于點(diǎn)B,直線BA與直線OC相精英家教網(wǎng)交于點(diǎn)A.
(1)當(dāng)x取何值時(shí)y1>y2
(2)當(dāng)直線BA平分△BOC的面積時(shí),求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線OC、BC的函數(shù)關(guān)系式分別是y1=x和y2=-2x+6,動點(diǎn)P(x,0)在OB上運(yùn)動(0<x<3),過點(diǎn)P作直線m與x軸垂直.
(1)求點(diǎn)C的坐標(biāo),并回答當(dāng)x取何值時(shí)y1>y2
(2)設(shè)△COB中位于直線m左側(cè)部分的面積為s,求出s與x之間函數(shù)關(guān)系式.
(3)當(dāng)x為何值時(shí),直線m平分△COB的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線OC、BC的函數(shù)關(guān)系式分別為y=x和y=-2x+6,動點(diǎn)P(x,0)在OB上移動(0<x<3),過點(diǎn)P作直線l與x軸垂直.
(1)求點(diǎn)C的坐標(biāo);
(2)設(shè)△OBC中位于直線l左側(cè)部分的面積為s,寫出s與x之間的函數(shù)關(guān)系式;
(3)在直角坐標(biāo)系中畫出(2)中函數(shù)的圖象;
(4)當(dāng)x為何值時(shí),直線l平分△OBC的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線OC、BC的函數(shù)關(guān)系式分別是y1=x和y2=-2x+6,動點(diǎn)P(x,0)在OB上運(yùn)動(0<x<3),過點(diǎn)P作直線m與x軸垂直.
(1)求點(diǎn)C的坐標(biāo);
(2)當(dāng)x為何值時(shí),直線m平分△COB的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線OC、BC的函數(shù)關(guān)系式分別是y1=x和y2=-2x+6.
(1)求點(diǎn)C的坐標(biāo).
(2)當(dāng)x取何值時(shí)y1>y2
(3)求△COB的面積.

查看答案和解析>>

同步練習(xí)冊答案