【題目】如圖所示,沿AE折疊矩形,點(diǎn)D恰好落在BC邊上的點(diǎn)F處,已知AB=8cmBC=10cm,求EC的長(zhǎng).

【答案】3

【解析】

先根據(jù)矩形的性質(zhì)得ADBC10ABCD8,再根據(jù)折疊的性質(zhì)得AFAD10,EFDE,在RtABF中,利用勾股定理計(jì)算出BF6,則CFBCBF4,設(shè)CEx,則DEEF8x,然后在RtECF中根據(jù)勾股定理得到x242=(8x2,再解方程即可得到CE的長(zhǎng).

∵四邊形ABCD為矩形,

ADBC10,ABCD8,

∵矩形ABCD沿直線AE折疊,頂點(diǎn)D恰好落在BC邊上的F處,

AFAD10,EFDE

RtABF中,∵BF6,

CFBCBF1064,

設(shè)CEx,則DEEF8x

RtECF中,∵CE2FC2EF2,

x242=(8x2,解得x3,

CE3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,BD為△ABC的角平分線,且BD=BC,E為BD延長(zhǎng)線上的一點(diǎn),BE=BA.下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正確的有( ) 個(gè)

A. 1 B. 2 C. 3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店進(jìn)行店慶活動(dòng),決定購(gòu)進(jìn)甲、乙兩種紀(jì)念品,若購(gòu)進(jìn)甲種紀(jì)念品1乙種紀(jì)念品2,需要160;購(gòu)進(jìn)甲種紀(jì)念品2乙種紀(jì)念品3,需要280.

(1)購(gòu)進(jìn)甲乙兩種紀(jì)念品每件各需要多少元?

(2)該商場(chǎng)決定購(gòu)進(jìn)甲乙兩種紀(jì)念品100,并且考慮市場(chǎng)需求和資金周轉(zhuǎn),用于購(gòu)買這些紀(jì)念品的資金不少于6300,同時(shí)又不能超過6430則該商場(chǎng)共有幾種進(jìn)貨方案?

(3)若銷售每件甲種紀(jì)念品可獲利30,每件乙種紀(jì)念品可獲利12,在第(2)問中的各種進(jìn)貨方案中,哪種方案獲利最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AD是∠BAC的平分線,DEABE,FAC上,且BD=DF

1)求證:CF=EB;

2)試判斷ABAF,EB之間存在的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰△ABC中,ADBC交直線BC于點(diǎn)D,若AD=BC,則△ABC的頂角的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點(diǎn),BEAC,垂足為點(diǎn)F,連接DF,分析下列四個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③DFDC;④tan∠CAD.其中正確的結(jié)論有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在校運(yùn)會(huì)之前想了解九年級(jí)女生一分鐘仰臥起坐得分情況(滿分為7分),在九年級(jí)500名女生中隨機(jī)抽出60名女生進(jìn)行一次抽樣摸底測(cè)試所得數(shù)據(jù)如下表:

1)從表中看出所抽的學(xué)生所得的分?jǐn)?shù)數(shù)據(jù)的眾數(shù)是______

A.40% B.7 C.6.5 D.5%

2)請(qǐng)將下面統(tǒng)計(jì)圖補(bǔ)充完整.

3)根據(jù)上述抽查,請(qǐng)估計(jì)該?荚嚪?jǐn)?shù)不低于6分的人數(shù)會(huì)有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OP1A1B1,A1P2A2B2,A2P3A3B3……,An-1PnAnBn都是正方形,對(duì)角線OA1A1A2,A2A3,……An-1An都在y軸上(n≥1的整數(shù)),點(diǎn)P1x1y1),P2x2y2),……,Pnxn,yn)在反比例函數(shù)y=x0)的圖象上,并已知B1-1,1.

1)求反比例函數(shù)y=的解析式;

2)求點(diǎn)P2P3的坐標(biāo);

3)由(1)、(2)的結(jié)果或規(guī)律試猜想并直接寫出:PnBnO的面積為 ,點(diǎn)Pn的坐標(biāo)為______(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線y=kx+4(k≠0)與y軸交于點(diǎn)A.

(1)如圖,直線y=﹣2x+1與直線y=kx+4(k≠0)交于點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)B的橫坐標(biāo)為-1.

①求點(diǎn)B的坐標(biāo)及k的值;

②直線y=﹣2x+1與直線y=kx+4與y軸所圍成的△ABC的面積等于 ;

(2)直線y=kx+4(k≠0)與x軸交于點(diǎn)E(x 0 ,0),若﹣2<x 0 <﹣1,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案