【題目】如圖,將△ABC繞著點C順時針旋轉50°后得到△A’B’C.若=40°,=110°,則∠的度數為________.
【答案】80°
【解析】
首先根據旋轉的性質可得:∠A′=∠A,∠A′CB′=∠ACB,即可得到∠A′=40°,再有∠B′=110°,利用三角形內角和可得∠A′CB′的度數,進而得到∠ACB的度數,再由條件將△ABC繞著點C順時針旋轉50°后得到△A′B′C′可得∠ACA′=50°,即可得到∠BCA′的度數.
根據旋轉的性質可得:∠A′=∠A,∠A′CB′=∠ACB,
∵∠A=40°,
∴∠A′=40°,
∵∠B′=110°,
∴∠A′CB′=180°-110°-40°=30°,
∴∠ACB=30°,
∵將△ABC繞著點C順時針旋轉50°后得到△A′B′C′,
∴∠ACA′=50°,
∴∠BCA′=30°+50°=80°.
科目:初中數學 來源: 題型:
【題目】如圖,AC是矩形ABCD的對角線,過AC的中點O作EF⊥AC,交BC于點E,交AD于點F,連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB=2,BC=4,求四邊形AECF的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】兩條拋物線與的頂點相同.
(1)求拋物線的解析式;
(2)點是拋物找在第四象限內圖象上的一動點,過點作軸,為垂足,求的最大值;
(3)設拋物線的頂點為點,點的坐標為,問在的對稱軸上是否存在點,使線段繞點順時針旋轉90°得到線段,且點恰好落在拋物線上?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點的坐標為(1,0),點的橫坐標為2,將點 繞點P旋轉,使它的對應點恰好落在軸上(不與點重合);再將點繞點O逆時針旋轉90°得到點.
(1)直接寫出點和點C的坐標;
(2)求經過A,B,C三點的拋物線的表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網格中,的頂點均在格點上,繞點順時針旋轉后得到.
(1)畫出;(其中、對應點分別是、)
(2)分別畫出旋轉過程中,點點經過的路徑;
①求點經過的路徑的長;
②求線段所掃過的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某淘寶網店銷售臺燈,成本為每個30元,銷售大數據分析表明,當每個臺燈售價為40元時,平均每月售出600個,若售價每上漲1元,其月銷量就減少20個,若售價每下降1元,其月銷量就增加200個.
(1)若售價上漲元,每月能售出___________個臺燈.
(2)為迎接“雙十一”,該網店決定降價銷售,在庫存為1210個臺燈的情況下,若預計月獲利恰好為8400元,求每個臺燈的售價.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個不相等的實數根.
(1)求m的取值范圍;
(2)寫出一個滿足條件的m的值,并求此時方程的根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數y=(x>0)的圖象經過矩形OABC對角線的交點M,分別與AB、BC相交于點D、E.若四邊形ODBE的面積為9,則k的值為( )
A. 3B. 6C. 9D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,平行四邊形ABCD中,AB⊥AC,AB=6,AD=10,點P在邊AD上運動,以P為圓心,PA為半徑的⊙P與對角線AC交于A,E兩點.
(1)如圖2,當⊙P與邊CD相切于點F時,求AP的長;
(2)不難發(fā)現,當⊙P與邊CD相切時,⊙P與平行四邊形ABCD的邊有三個公共點,隨著AP的變化,⊙P與平行四邊形ABCD的邊的公共點的個數也在變化,若公共點的個數為4,直接寫出相對應的AP的值的取值范圍____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com