(本題10分)如圖,在梯形ABCD中,AD//BC,E是BC的中點,AD=5 cm,BC=12 cm,CD= cm,∠C=45°,點P從B點出發(fā),沿著BC方向以1cm/s運動,到達(dá)點C停止,設(shè)P運動了ts。
1.(1)當(dāng)t為何值時以點P、A、D、E為頂點的四邊形為直角梯形;(4分)
2.(2)當(dāng)t為何值時以點P、A、D、E為頂點的四邊形為平行四邊形;(4分)
3.(3)點P在BC邊上運動的過程中,以P、A、D、E為頂點的四邊形能否構(gòu)成菱形?如能,請求出t值,如不能請說明理由。(2分)
1.(1)當(dāng)AP⊥BC或者DP⊥BC時為直角梯形,
若AP⊥BC時,則t=3s………………………………………………………………2分;
若DP⊥BC時,則t=8s………………………………………………………………4分
2.(2)當(dāng)AD=PE或者AD=EP時是平行四邊形
若是平行四邊形APED,則t=1s;……………………………………………………6分;
若是平行四邊形AEPD則t=11s;……………………………………………………8分
3.(3)若為菱形,必須是平行四邊形,所以在(2)中兩種情形中考察……9分;
討論得知,當(dāng)t=11s時是菱形
【解析】略
科目:初中數(shù)學(xué) 來源: 題型:
(本題10分)如圖,直線x-2y=-5和x+y=1分別與x軸交于A、B兩點,這兩條線的交點為P.
1.(1)求點P的坐標(biāo).
2.(2)求△APB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(本題10分)如圖,P是雙曲線的一個分支上的一點,以點P為圓心,1個單位長度為半徑作⊙P,設(shè)點P的坐標(biāo)為(,).
(1)求當(dāng)為何值時,⊙P與直線相切,并求點P的坐標(biāo).
(2)直接寫出當(dāng)為何值時,⊙P與直線相交、相離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(本題10分)如圖,以點M(-1,0)為圓心的圓與y軸、x軸分別交于點A、B、C、D,直線y=- x- 與⊙M相切于點H,交x軸于點E,交y軸于點F.
1.(1)請直接寫出OE、⊙M的半徑r、CH的長;(3分)
2.(2)如圖1,弦HQ交x軸于點P,且DP:PH=3:2,求COS∠QHC的值;(3分)
3.(3)如圖2,點K為線段EC上一動點(不與E、C重合),連接BK交⊙M于點T,弦AT交x軸于點N.是否存在一個常數(shù)a,始終滿足MN·MK=a,如果存在,請求出a的值;如果不存在,請說明理由.(3分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年湖北武夷山市九年級上學(xué)期期末考試數(shù)學(xué)卷.doc 題型:解答題
(本題10分)如圖,在Rt△ABC中,∠C=90°,點O在AB上,以O(shè)為圓心,OA長為半徑的圓與AC、AB分別交于點D、E,且∠CBD=∠A.
試判斷直線BD與⊙O的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年北京師大附中初一第一學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本題10分)如圖4,邊長為的矩形,它的周長為14,面積為10,求下列各式的值:(1) (2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com