【題目】如圖,在△ABC中,BC>AC,點E在BC上,CE=CA,點D在AB上,連接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足為H.
(1)如圖a,當∠ACB=90°時,連接CD,過點C作CF⊥CD交BA的延長線于點F.
①求證:FA=DE;
②請猜想三條線段DE,AD,CH之間的數(shù)量關系,直接寫出結論;
(2)如圖b,當∠ACB=120°時,三條線段DE,AD,CH之間存在怎樣的數(shù)量關系?請證明你的結論.
【答案】(1)①證明見解析;②DE+AD=2CH;(2)AD+DE=CH.
【解析】
試題分析:(1)①根據(jù)ASA證明△AFC≌△EDC,可得結論;
②結論是:DE+AD=2CH,根據(jù)CH是等腰直角△FCD斜邊上的中線得:FD=2CH,再進行等量代換可得結論;
(2)如圖b,根據(jù)(1)作輔助線,構建全等三角形,證明△FAC≌△DEC得AF=DE,F(xiàn)C=CD,得等腰△FDC,由三線合一的性質(zhì)得CH,是底邊中線和頂角平分線,得直角△CHD,利用三角函數(shù)得出HD與CH的關系,從而得出結論.
試題解析:(1)①∵CF⊥CD,∴∠FCD=90°,∵∠ACB=90°,∴∠FCA+∠ACD=∠ACD+∠DCE,∴∠FCA=∠DCE,∵∠FAC=90°+∠B,∠CED=90°+∠B,∴∠FAC=∠CED,∵AC=CE,∴△AFC≌△EDC,∴FA=DE,②DE+AD=2CH,理由是:
∵△AFC≌△EDC,∴CF=CD,∵CH⊥AB,∴FH=HD,在Rt△FCD中,CH是斜邊FD的中線,∴FD=2DH,∴AF+AD=2CH,∴DE+AD=2CH;
(2)AD+DE=CH,理由是:
如圖b,作∠FCD=∠ACB,交BA延長線于F,∵∠FCA+∠ACD=∠ACD+∠DCB,∴∠FCA=∠DCB,∵∠EDA=60°,∴∠EDB=120°,∵∠FAC=120°+∠B,∠CED=120°+∠B,∴∠FAC=∠CED,∵AC=CE,∴△FAC≌△DEC,∴AF=DE,F(xiàn)C=CD,∵CH⊥FD,∴FH=HD,∠FCH=∠HCD=60°,在Rt△CHD中,tan60°=,∴DH=CH,∵AD+DE=AD+AF=FD=2DH=CH,即:AD+DE=CH.
科目:初中數(shù)學 來源: 題型:
【題目】有一組數(shù)據(jù):6、3、4、x、7,它們的平均數(shù)是10,則這組數(shù)據(jù)的中位數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:
在一個三角形中,各邊和它所對角的正弦的比相等,,利用上述結論可以求解如下題目:
在△ABC中,∠A、∠B、∠C的對邊分別為a,b,c.若∠A=45°,∠B=30°,a=6,求b.
解:在△ABC中,∵,∴.
理解應用:
如圖,甲船以每小時海里的速度向正北方向航行,當甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,且乙船從B1處按北偏東15°方向勻速直線航行,當甲船航行20分鐘到達A2時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距海里.
(1)判斷△A1A2B2的形狀,并給出證明;
(2)求乙船每小時航行多少海里?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法錯誤的是( )
A.一個正數(shù)的絕對值一定是正數(shù)
B.一個負數(shù)的絕對值一定是正數(shù)
C.任何數(shù)的絕對值都不是負數(shù)
D.任何數(shù)的絕對值一定是正數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在頻數(shù)分布直方圖中,有11個小長方形,若中間一個小長方形的面積等于其它10個小長方形面積的和的 ,且數(shù)據(jù)有160個,則中間一組的頻數(shù)為( )
A.32
B.0.2
C.40
D.0.25
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF.連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請判斷:FG與CE的數(shù)量關系是 ,位置關系是 ;
(2)如圖2,若點E,F(xiàn)分別是邊CB,BA延長線上的點,其它條件不變,(1)中結論是否仍然成立?請作出判斷并給予證明;
(3)如圖3,若點E,F(xiàn)分別是邊BC,AB延長線上的點,其它條件不變,(1)中結論是否仍然成立?請直接寫出你的判斷.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,∠E=∠F,∠B=∠C,AE=AF,以下結論:①∠FAN=∠EAM;②EM=FN;③△ACN≌△ABM;④CD=DN.其中正確的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com