【題目】如圖,是直線上一點,平分.則圖中互余的角、互補的角各有( )對

A.4,7B.4,4C.4,5D.3,3

【答案】C

【解析】

根據(jù)角平分線得到∠AOC=BOC,利用即可得到互余的角4對,根據(jù)∠AOE=,得到3對互補的角,再利用等角得到2對互補的角,共5對互補的角.

平分

∴∠AOC=BOC,

∴∠BOC+BOD=,∠AOC+DOE=,

∴∠BOC+DOE=,AOC+BOD=,

4對互余的角;

∵∠AOE=

∴∠AOC+COE=,∠DOE+AOD=,AOB+BOE=,

∴∠BOC+COE=,

∵∠AOC+DOE=,∠AOC+BOD=,

∴∠DOE=BOD

∴∠BOD+AOD=,

5對互補的角,

故選:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知長方形ABCDAB=8cm,BC=10cm,在邊CD上取一點E,將ADE折疊使點D恰好落在BC邊上的點F,則CE的長為___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊各10人的比賽成績如下表(10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

(1)甲隊成績的中位數(shù)是 分,乙隊成績的眾數(shù)是 分;

(2)計算乙隊的平均成績和方差;

(3)已知甲隊成績的方差是1.4,則成績較為整齊的是 隊.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王大伯計劃在自家的魚塘里投放普通魚苗和紅色魚苗,需要購買這兩種魚苗2000尾,購買這兩種魚苗的相關信息如下表:

品種項目

單價(元/尾)

養(yǎng)殖費用(元/尾)

普通魚苗

0.5

1

紅色魚苗

1

1

設購買普通魚苗x尾,養(yǎng)殖這些魚苗的總費用為y.

1)寫出y(元)與x(尾)之間的函數(shù)關系式;

2)如果購買每種魚苗不少于600尾,在總魚苗2000尾不變的條件下,養(yǎng)殖這些魚苗的最低費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上A、B兩點對應的數(shù)分別為﹣28P為數(shù)軸上任意一點且對應的數(shù)為x,C為線段PA的中點.

1)若點P在線段AB上,求2BCBP的值;

2)若點P在線段AB的延長線上,式子2BCBP的值是定值嗎?若是,求出它的值,若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果關于x的一元二次方程有兩個實數(shù)根,且其中一個根為另一個根的2倍,則稱這樣的方程為倍根方程.以下關于倍根方程的說法,正確的是________.(寫出所有正確說法的序號).

方程是倍根方程;

是倍根方程,則;

若點在反比例函數(shù)的圖像上,則關于的方程是倍根方程;

若方程是倍根方程,且相異兩點, 都在拋物線上,則方程的一個根為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知為線段上一點,的中點,的中點,的中點.,則___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】201311日新交通法規(guī)開始實施.為了解某社區(qū)居民遵守交通法規(guī)情況,小明隨機選取部分居民就行人闖紅燈現(xiàn)象進行問卷調查,調查分為“A:從不闖紅燈;B:偶爾闖紅燈;C:經(jīng)常闖紅燈;D:其他四種情況,并根據(jù)調查結果繪制出部分條形統(tǒng)計圖(如圖1)和部分扇形統(tǒng)計圖(如圖2).請根據(jù)圖中信息,解答下列問題:

1)本次調查共選取   名居民;

2)求出扇形統(tǒng)計圖中“C”所對扇形的圓心角的度數(shù),并將條形統(tǒng)計圖補充完整;

3)如果該社區(qū)共有居民1600人,估計有多少人從不闖紅燈?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】七(1)班的學習小組學習“線段中點內容時,得到一個很有意思的結論,請跟隨他們一起思考.

1)發(fā)現(xiàn):

如圖1,線段,點在線段上,當點是線段和線段的中點時,線段的長為_________;若點在線段的延長線上,其他條件不變(請在圖2中按題目要求將圖補充完整),得到的線段與線段之間的數(shù)量關系為_________.

2)應用:

如圖3,現(xiàn)有長為40米的拔河比賽專用繩,其左右兩端各有一段()磨損了,磨損后的麻繩不再符合比賽要求. 已知磨損的麻繩總長度不足20. 小明認為只利用麻繩和一把剪刀(剪刀只用于剪斷麻繩)就可以得到一條長20米的拔河比賽專用繩. 小明所在學習小組認為此法可行,于是他們應用“線段中點”的結論很快做出了符合要求的專用繩,請你嘗試著“復原”他們的做法:

①在圖中標出點、點的位置,并簡述畫圖方法;

②請說明①題中所標示點的理由.

查看答案和解析>>

同步練習冊答案