【題目】如圖所示,A(1,0)、點(diǎn)B在y軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,且點(diǎn)C的坐標(biāo)為(﹣3,2).

(1)直接寫出點(diǎn)E的坐標(biāo)   ;

(2)在四邊形ABCD中,點(diǎn)P從點(diǎn)B出發(fā),沿“BC→CD”移動(dòng).若點(diǎn)P的速度為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒,回答下列問(wèn)題:

當(dāng)t=   秒時(shí),點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);

求點(diǎn)P在運(yùn)動(dòng)過(guò)程中的坐標(biāo),(用含t的式子表示,寫出過(guò)程);

當(dāng)3秒<t<5秒時(shí),設(shè)∠CBP=x°,∠PAD=y°,∠BPA=z°,試問(wèn) x,y,z之間的數(shù)量關(guān)系能否確定?若能,請(qǐng)用含x,y的式子表示z,寫出過(guò)程;若不能,說(shuō)明理由.

【答案】(1)(﹣2,0);(2)①2;②(﹣3,5﹣t);③能確定, z=x+y.

【解析】試題分析:(1)根據(jù)平移的性質(zhì)即可得到結(jié)論;

(2)①由點(diǎn)C的坐標(biāo)為(-3,2).得到BC=3,CD=2,由于點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);于是確定點(diǎn)P在線段BC上,有PB=CD,即可得到結(jié)果;

當(dāng)點(diǎn)P在線段BC上時(shí),點(diǎn)P的坐標(biāo)(-t,2),當(dāng)點(diǎn)P在線段CD上時(shí),點(diǎn)P的坐標(biāo)(-3,5-t);

如圖,過(guò)PPEBCABE,則PEAD,根據(jù)平行線的性質(zhì)即可得到結(jié)論.

解:(1)根據(jù)題意,可得

三角形OAB沿x軸負(fù)方向平移3個(gè)單位得到三角形DEC,

點(diǎn)A的坐標(biāo)是(1,0),

點(diǎn)E的坐標(biāo)是(﹣2,0);

故答案為:(﹣2,0);

(2)①∵點(diǎn)C的坐標(biāo)為(﹣3,2)

∴BC=3,CD=2,

點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);

點(diǎn)P在線段BC上,

∴PB=CD,

即t=2;

當(dāng)t=2秒時(shí),點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);

故答案為:2;

當(dāng)點(diǎn)P在線段BC上時(shí),點(diǎn)P的坐標(biāo)(﹣t,2),

當(dāng)點(diǎn)P在線段CD上時(shí),點(diǎn)P的坐標(biāo)(﹣3,5﹣t);

能確定,

如圖,過(guò)P作PFBC交AB于F,

則FE∥AD,

∴∠1=∠CBP=x°,∠2=∠DAP=y°,

∴∠BPA=∠1+∠2=x°+y°=z°,

∴z=x+y.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD是平行四邊形,對(duì)角線AC、BD交于點(diǎn)O,E是BC的中點(diǎn),以下說(shuō)法錯(cuò)誤的是( 。

A. OE=DC B. OA=OC C. ∠BOE=∠OBA D. ∠OBE=∠OCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子中,共有“一紅二白”三個(gè)球,它們除顏色外其余都相同.
(1)從盒子中摸出1個(gè)球,是白球的概率是多少?
(2)從盒子中摸出1個(gè)球,不放回再摸出1個(gè)球,請(qǐng)用畫樹(shù)狀圖或列表的方式表示出所有可能的結(jié)果,并求出摸出的恰好是“一紅一白”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人共收集郵票若干張,其中2000年以前的國(guó)內(nèi)外發(fā)行的郵票,2001年國(guó)內(nèi)發(fā)行的,2002年國(guó)內(nèi)發(fā)行的,此外尚有不足100張的國(guó)外郵票.求該人共有多少?gòu)堗]票.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系,A(a,0),B(b,0),C(﹣1,2),且|2a+b+1|+(a+2b﹣4)2=0.

(1)求a,b的值;

(2)①在x軸的正半軸上存在一點(diǎn)M,使SCOM=ABC的面積,求出點(diǎn)M的坐標(biāo);

在坐標(biāo)軸的其他位置是否存在點(diǎn)M,使COM的面積=ABC的面積仍然成立?若存在,請(qǐng)直接寫出符合條件的點(diǎn)M的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 已知反比例函數(shù)y=的圖象與一次函數(shù)y=ax+b的圖象交于M(2,m)和N(-1,-4)兩點(diǎn).

(1)求這兩個(gè)函數(shù)的解析式;

(2)求△MON的面積;

(3)請(qǐng)判斷點(diǎn)P(4,1)是否在這個(gè)反比例函數(shù)的圖象上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABCD.

如圖1,你能得出∠A+E+C=360°嗎?

如圖2,猜想出∠A.C、E的關(guān)系式并說(shuō)明理由.

如圖3,A.C、E的關(guān)系式又是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)我國(guó)古代《周髀算經(jīng)》記載,大約公元1120年,商高曾對(duì)周公說(shuō)過(guò)一段話,其意思是將一根直尺折成一個(gè)直角,兩端連接得一個(gè)直角三角形,如果勾是三,股是四,那么弦就等于五,后人概括為“勾三股四弦五”。

(1)觀察:3,4,5; 5,12,13; 7,24,25……發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒(méi)有間斷過(guò)。計(jì)算, 并根據(jù)發(fā)現(xiàn)的規(guī)律,分別寫出能表示7,24,25的股和弦的算式;

(2)根據(jù)(1)的規(guī)律,用n(n為奇數(shù)且n≥3)的代數(shù)式來(lái)表示所有這些勾股數(shù)的勾、股、弦,合理猜想它們之間的兩種相等關(guān)系并對(duì)其一種猜想加以說(shuō)明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使∠BOC=65°,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O.

1 2

(1)如圖1,將三角板MON的一邊ON與射線OB重合時(shí),則∠MOC=      ;

(2)如圖2,將三角板MON繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)一定角度,此時(shí)OC是∠MOB的平分線,求∠BON和∠CON的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案