【題目】在等腰三角形ABC中,ABAC=10,BC=12,DBC邊上的任意一點,過點D分別作DEAB,DFAC,垂足分別為E,F,則DEDF______

【答案】9.6

【解析】分析:如圖連接AD,AHBCH.首先利用勾股定理求出AH,再根據(jù)SABC=SABD+SACD,DEAB,DFAC可得BCAH=ABDE+ACDF,由此即可解決問題.

詳解如圖,連接ADAHBCH

AB=AC=10,AHBC,BH=CH=6.在RtABHAH===8

SABC=SABD+SACD,DEAB,DFACBCAH=ABDE+ACDF,6×8=5DE+5DF,DE+DF=9.6

故答案為:9.6

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:Rt△ABC中,∠ACB=90°,CA=3,CB=4,設P,Q分別為AB邊,CB邊上的動點,它們同時分別從A,C出發(fā),以每秒1個單位長度的速度向終點B運動,設P,Q運動的時間為t秒.

(1)求△CPQ的面積S與運動時間t之間的函數(shù)關系式,并求出S的最大值.
(2)t為何值時,△CPQ為直角三角形.
(3)①探索:△CPQ是否可能為正三角形,說明理由.
②P,Q兩點同時出發(fā),若點P的運動速度不變,試改變點Q的運動速度,使△CPQ為正三角形,求出點Q的運動速度和此時的t值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小組同學在一周內(nèi)參加家務勞動時間與人數(shù)情況如下表所示:

下列關于“勞動時間”這組數(shù)據(jù)敘述正確的是( )

A. 中位數(shù)是2 B. 眾數(shù)是2 C. 平均數(shù)是3 D. 方差是0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOB=60°,分別引射線OC、OD、OE,使OD平分BOC,OE平分∠AOD.

(1)若BOC=20°,請依題意補全圖形,并求BOE的度數(shù);

(2)若BOC=α(其中α是小于60°的銳角),請直接寫出BOE的度數(shù)(用含α的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC的三邊為a、b、c,由下列條件不能判斷它是直角三角形的是( 。

A. A: B: C =345 B. A=B+C

C. a2=(b+c)(b-c) D. a:b:c =12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A坐標為(0,3),點B在x軸上
(1)在坐標系中求作一點M,使得點M到點A,點B和原點O這三點的距離相等,在圖中保留作圖痕跡,不寫作法;
(2)若函數(shù)y= 的圖象經(jīng)過點M,且sin∠OAB= ,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長均為1.線段AB的兩個端點在小正方形的頂點上。

(1)在圖中畫一個以AB為腰的等腰三角形ABC,點C在小正方形的頂點上,且tanB=3;

(2)在圖中畫一個以AB為底的等腰三角形ABD,D在小正方形的項點上,ABD是銳角三角形.連接CD,請直接寫出線段CD的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸的負半軸交于點A,B(點A在點B的右邊),與y軸的正半軸交于點C,且OA=OC=1,則下列關系中正確的是(

A.a+b=1
B.b<2a
C.a﹣b=﹣1
D.ac<0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商品公司為指導某種應季商品的生產(chǎn)和銷售,在對歷年市場行情和生產(chǎn)情況進行調(diào)查基礎上,對今年這種商品的市場售價和生產(chǎn)成本進行了預測并提供了兩個方面的信息:如圖(1)(2).

注:兩圖中的每個實心黑點所對應的縱坐標分別指相應月份一件商品的售價和成本,生產(chǎn)成本6月份最高;圖(1)的圖象是線段,圖(2)的圖象是拋物線.
(1)在3月份出售這種商品,一件商品的利潤是多少?
(2)設t月份出售這種商品,一件商品的成本Q(元),求Q關于t的函數(shù)解析式.
(3)設t月份出售這種商品,一件商品的利潤W(元),求W關于t的函數(shù)解析式.
(4)問哪個月出售這種商品,一件商品的利潤最大?簡單說明理由.

查看答案和解析>>

同步練習冊答案