某工廠投入生產(chǎn)一種機器的總成本為2000萬元.當(dāng)該機器生產(chǎn)數(shù)量至少為10臺,但不超過70臺時,每臺成本y與生產(chǎn)數(shù)量x之間是一次函數(shù)關(guān)系,函數(shù)y與自變量x的部分對應(yīng)值如下表:

x(單位:臺)
10
20
30
y(單位:萬元∕臺)
60
55
50
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求該機器的生產(chǎn)數(shù)量;
(3)市場調(diào)查發(fā)現(xiàn),這種機器每月銷售量z(臺)與售價a(萬元∕臺)之間滿足如圖所示的函數(shù)關(guān)系.該廠生產(chǎn)這種機器后第一個月按同一售價共賣出這種機器25臺,請你求出該廠第一個月銷售這種機器的利潤.(注:利潤=售價﹣成本)

解:(1)設(shè)y與x之間的關(guān)系式為y=kx+b,由題意,得
,解得:。
∴y=x+65。
∵該機器生產(chǎn)數(shù)量至少為10臺,但不超過70臺,∴10≤x≤70。
(2)由題意,得xy=2000,即,即。
解得:x1=50,x2=80>70(舍去)。
答:該機器的生產(chǎn)數(shù)量為50臺。
(3)設(shè)每月銷售量z(臺)與售價a(萬元∕臺)之間的函數(shù)關(guān)系式為,由函數(shù)圖象,得
,解得:。
∴z=﹣a+90。
當(dāng)z=25時,a=65;當(dāng)x=50時,y=40,
∴總利潤為:25(65﹣40)=625(萬元).。
答:該廠第一個月銷售這種機器的利潤為625萬元

解析試題分析:(1)設(shè)y與x之間的關(guān)系式為y=kx+b,運用待定系數(shù)法就可以求出其關(guān)系式,由該機器生產(chǎn)數(shù)量至少為10臺,但不超過70臺就可以確定自變量的取值范圍。
(2)根據(jù)每臺的成本乘以生產(chǎn)數(shù)量等于總成本建立方程求出其解即可。
(3)設(shè)每月銷售量z(臺)與售價a(萬元∕臺)之間的函數(shù)關(guān)系式為z=ka+b,運用待定系數(shù)法求出其解析式,再將z=25代入解析式求出a的值,就可以求出每臺的利潤,從而求出總利潤。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線y=-x+4與反比例函數(shù)y=的圖象相交于點A(-2,a),并且與x軸相交于點B。

(1)求a的值;
(2)求反比例函數(shù)的表達(dá)式;
(3)求△AOB的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線y=-x+8與x軸、y軸分別相交于點A、B,設(shè)M是OB上一點,若將△ABM沿AM折疊,使點B恰好落在x軸上的點B'處.

求(1)點B'的坐標(biāo).(2)直線AM所對應(yīng)的函數(shù)關(guān)系式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某地區(qū)為了進(jìn)一步緩解交通擁堵問題,決定修建一條長為6千米的公路.如果平均每天的修建費y(萬元)與修建天數(shù)x(天)之間在30≤x≤120,具有一次函數(shù)的關(guān)系,如下表所示.

x
50
60
90
120
y
40
38
32
26
(1)求y關(guān)于x的函數(shù)解析式;
(2)后來在修建的過程中計劃發(fā)生改變,政府決定多修2千米,因此在沒有增減建設(shè)力量的情況下,修完這條路比計劃晚了15天,求原計劃每天的修建費.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知一次函數(shù)y1=kx+b與反比例函數(shù)的圖象交于A(2,4)、B(﹣4,n)兩點.

(1)分別求出y1和y2的解析式;
(2)寫出y1=y2時,x的值;
(3)寫出y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

“二廣”高速在益陽境內(nèi)的建設(shè)正在緊張地進(jìn)行,現(xiàn)有大量的沙石需要運輸.“益安”車隊有載重量為8噸、10噸的卡車共12輛,全部車輛運輸一次能運輸110噸沙石.
(1)求“益安”車隊載重量為8噸、10噸的卡車各有多少輛?
(2)隨著工程的進(jìn)展,“益安”車隊需要一次運輸沙石165噸以上,為了完成任務(wù),準(zhǔn)備新增購這兩種卡車共6輛,車隊有多少種購買方案,請你一一寫出.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

增強公民的節(jié)約意識,合理利用天然氣資源,某市自1月1日起對市區(qū)民用管道天然氣價格進(jìn)行調(diào)整,實行階梯式氣價,調(diào)整后的收費價格如表所示:

每月用氣量
單價(元/m3
不超出75m3的部分
2.5
超出75m3不超出125m3的部分
a
超出125m3的部分
a+0.25
(1)若甲用戶3月份的用氣量為60m3,則應(yīng)繳費     元;
(2)若調(diào)價后每月支出的燃?xì)赓M為y(元),每月的用氣量為x(m3),y與x之間的關(guān)系如圖所示,求a的值及y與x之間的函數(shù)關(guān)系式;

(3)在(2)的條件下,若乙用戶2、3月份共用1氣175m3(3月份用氣量低于2月份用氣量),共繳費455元,乙用戶2、3月份的用氣量各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在“美麗廣西,清潔鄉(xiāng)村”活動中,李家村村長提出了兩種購買垃圾桶方案;方案1:買分類垃圾桶,需要費用3000元,以后每月的垃圾處理費用250元;方案2:買不分類垃圾桶,需要費用1000元,以后每月的垃圾處理費用500元;設(shè)方案1的購買費和每月垃圾處理費共為y1元,交費時間為x個月;方案2的購買費和每月垃圾處理費共為y2元,交費時間為x個月.

(1)直接寫出y1、y2與x的函數(shù)關(guān)系式;
(2)在同一坐標(biāo)系內(nèi),畫出函數(shù)y1、y2的圖象;
(3)在垃圾桶使用壽命相同的情況下,哪種方案省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線x=1,則下列四個結(jié)論錯誤的是( 。

A.c>0 B.2a+b=0C.b2﹣4ac>0 D.a(chǎn)﹣b+c>0

查看答案和解析>>

同步練習(xí)冊答案