【題目】如圖,ABCD的對(duì)角線AC、BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個(gè)數(shù)有(  )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

【答案】C
【解析】∵四邊形ABCD是平行四邊形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等邊三角形,
∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正確;∵AC⊥AB,∴SABCD=ABAC,故②正確,
∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③錯(cuò)誤;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正確.故選:C.
由四邊形ABCD是平行四邊形,得到∠ABC=∠ADC=60°,∠BAD=120°,根據(jù)AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等邊三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正確;由于AC⊥AB,得到SABCD=ABAC,故②正確,根據(jù)AB=BC,OB=BD,且BD>BC,得到AB≠OB,故③錯(cuò)誤;根據(jù)三角形的中位線定理得到OE=AB,于是得到OE=BC,故④正確.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=﹣x2+bx+3與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C.

(1)求拋物線的解析式.
(2)直線y=kx+3k經(jīng)過(guò)點(diǎn)B,與y軸的負(fù)半軸交于點(diǎn)D,點(diǎn)P為第二象限內(nèi)拋物線上一點(diǎn),連接PD,射線PD繞點(diǎn)P順時(shí)針旋轉(zhuǎn)與線段BD交于點(diǎn)E,且∠EPD=2∠PDC,∠EPD的平分線交線段BD于點(diǎn)H,∠BEP+∠BDP=90°
①若四邊形PHDC是平行四邊形,求點(diǎn)P的坐標(biāo);
②過(guò)點(diǎn)E作EF⊥PD,交PD于點(diǎn)G,交y軸于點(diǎn)F,已知PF=3 ,求直線PF的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB=5,AD=12,將矩形ABCD沿直線l向右翻滾兩次至如圖所示位置,則點(diǎn)B所經(jīng)過(guò)的路線長(zhǎng)是 (結(jié)果不取近似值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)開(kāi)展“陽(yáng)光體育一小時(shí)”活動(dòng),根據(jù)學(xué)校實(shí)際情況,如圖決定開(kāi)設(shè)“A:踢毽子,B:籃球,C:跳繩,D:乒乓球”四項(xiàng)運(yùn)動(dòng)項(xiàng)目(每位同學(xué)必須選擇一項(xiàng)),為了解學(xué)生最喜歡哪一項(xiàng)運(yùn)動(dòng)項(xiàng)目,隨機(jī)抽取了一部分學(xué)生進(jìn)行調(diào)查,丙將調(diào)查結(jié)果繪制成如圖的統(tǒng)計(jì)圖,則參加調(diào)查的學(xué)生中最喜歡跳繩運(yùn)動(dòng)項(xiàng)目的學(xué)生數(shù)為( 。

A.240
B.120
C.80
D.40

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計(jì)劃用這兩種原料全部生產(chǎn)A、B兩種產(chǎn)品共50件,生產(chǎn)A、B兩種產(chǎn)品與所需原料情況如下表所示:

原料型號(hào)

甲種原料(千克)

乙種原料(千克)

A產(chǎn)品(每件)

9

3

B產(chǎn)品(每件)

4

10


(1)該工廠生產(chǎn)A、B兩種產(chǎn)品有哪幾種方案?
(2)若生成一件A產(chǎn)品可獲利80元,生產(chǎn)一件B產(chǎn)品可獲利120元,怎樣安排生產(chǎn)可獲得最大利潤(rùn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有甲、乙兩個(gè)容器,分別裝有進(jìn)水管和出水管,兩容器的進(jìn)出水速度不變,先打開(kāi)乙容器的進(jìn)水管,2分鐘時(shí)再打開(kāi)甲容器的進(jìn)水管,又過(guò)2分鐘關(guān)閉甲容器的進(jìn)水管,再過(guò)4分鐘同時(shí)打開(kāi)甲容器的進(jìn)、出水管.直到12分鐘時(shí),同時(shí)關(guān)閉兩容器的進(jìn)出水管.打開(kāi)和關(guān)閉水管的時(shí)間忽略不計(jì).容器中的水量y(升)與乙容器注水時(shí)間x(分)之間的關(guān)系如圖所示.

(1)求甲容器的進(jìn)、出水速度.
(2)甲容器進(jìn)、出水管都關(guān)閉后,是否存在兩容器的水量相等?若存在,求出此時(shí)的時(shí)間.
(3)若使兩容器第12分鐘時(shí)水量相等,則乙容器6分鐘后進(jìn)水速度應(yīng)變?yōu)槎嗌伲?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有三張反面朝上的撲克牌:紅桃2、紅桃3、黑桃x(1≤x≤13且x為奇數(shù)或偶數(shù)).把牌洗勻后第一次抽取一張,記好花色和數(shù)字后將牌放回,重新洗勻第二次再抽取一張.
(1)求兩次抽得相同花色的概率;
(2)當(dāng)甲選擇x為奇數(shù),乙選擇x為偶數(shù)時(shí),他們兩次抽得的數(shù)字和是奇數(shù)的可能性大小一樣嗎?請(qǐng)說(shuō)明理由.(提示:三張撲克牌可以分別簡(jiǎn)記為紅2、紅3、黑x)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=x2﹣4x+3與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)C是此拋物線的頂點(diǎn).
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)點(diǎn)C在反比例函數(shù)(k≠0)的圖象上,求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有四張正面分別標(biāo)有數(shù)字﹣1,0,1,2的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上洗均勻.
(1)隨機(jī)抽取一張卡片,求抽到數(shù)字“﹣1”的概率;
(2)隨機(jī)抽取一張卡片,然后不放回,再隨機(jī)抽取一張卡片,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出第一次抽到數(shù)字“2”且第二次抽到數(shù)字“0”的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案