若關(guān)于x的函數(shù)y=kx2+2x﹣1與x軸僅有一個(gè)公共點(diǎn),則實(shí)數(shù)k的值為      
0或﹣1
本題考查了拋物線與x軸的交點(diǎn).解題時(shí),需要對(duì)函數(shù)y=kx2+2x﹣1進(jìn)行分類討論:一次函數(shù)和二次函數(shù)時(shí),滿足條件的k的值.
解:令y=0,則kx2+2x﹣1=0.
∵關(guān)于x的函數(shù)y=kx2+2x﹣1與x軸僅有一個(gè)公共點(diǎn),
∴關(guān)于x的方程kx2+2x﹣1=0只有一個(gè)根.
①當(dāng)k=0時(shí),2x﹣1=0,即x=,∴原方程只有一個(gè)根,∴k=0符號(hào)題意;
②當(dāng)k≠0時(shí),△=4+4k=0,
解得,k=﹣1.
綜上所述,k=0或﹣1.
故答案是:0或﹣1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)與x軸交于A(1,0)、B(3,0)兩點(diǎn);二次函數(shù)的頂點(diǎn)為P.
(1)請(qǐng)直接寫出:b=_______,c=___________;
(2)當(dāng)∠APB=90°,求實(shí)數(shù)k的值;
(3)若直線與拋物線L2交于E,F(xiàn)兩點(diǎn),問(wèn)線段EF的長(zhǎng)度是否發(fā)生變化?如果不發(fā)生變化,請(qǐng)求出EF的長(zhǎng)度;如果發(fā)生變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

心理學(xué)家通過(guò)實(shí)驗(yàn)發(fā)現(xiàn):初中學(xué)生聽講的注意力隨時(shí)間變化,講課開始時(shí),學(xué)生注意力逐漸增強(qiáng),中間有一段平穩(wěn)狀態(tài),隨后開始分散.學(xué)生注意力指標(biāo)數(shù)y隨時(shí)間表t(分鐘)變化的函數(shù)圖象如下.當(dāng)0≤t≤10時(shí),圖像是拋物線的一部分,當(dāng)10≤t≤20時(shí)和20≤t≤40時(shí),圖像是線段。
(1)當(dāng)0≤t≤10時(shí),求注意力指標(biāo)數(shù)y與時(shí)間t的函數(shù)關(guān)系式;
(2)一道數(shù)學(xué)探究題需要講解24分鐘,問(wèn)老師能否經(jīng)過(guò)恰當(dāng)安排,使學(xué)生在探究這道題時(shí),注意力指標(biāo)數(shù)不低于45?請(qǐng)通過(guò)計(jì)算說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A、B、C在x軸上,點(diǎn)D、E在y軸上,OA=OD=2,OC=OE=4,B為線段OA的中點(diǎn),直線AD與經(jīng)過(guò)B、E、C三點(diǎn)的拋物線交于F、G兩點(diǎn),與其對(duì)稱軸交于M,點(diǎn)P為線段FG上一個(gè)動(dòng)點(diǎn)(點(diǎn)P與F、G不重合),作PQ∥y軸與拋物線交于點(diǎn)Q.
(1)若經(jīng)過(guò)B、E、C三點(diǎn)的拋物線的解析式為y=-x2+(2b-1)x+c-5,則b=         ,c=         (直接填空)
(2)①以P、D、E為頂點(diǎn)的三角形是直角三角形,則點(diǎn)P的坐標(biāo)為         (直接填空)
②若拋物線頂點(diǎn)為N,又PE+PN的值最小時(shí),求相應(yīng)點(diǎn)P的坐標(biāo).
(3)連結(jié)QN,探究四邊形PMNQ的形狀:
①能否成為平行四邊形
②能否成為等腰梯形?若能,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)E在邊BC上,若∠AEF=90°,且EF交正方形外角的平分線CF于點(diǎn)F.

(1)圖1中若點(diǎn)E是邊BC的中點(diǎn),我們可以構(gòu)造兩個(gè)三角形全等來(lái)證明AE=EF,請(qǐng)敘述你的一個(gè)構(gòu)造方案,并指出是哪兩個(gè)三角形全等(不要求證明);
(2)如圖2,若點(diǎn)E在線段BC上滑動(dòng)(不與點(diǎn)B,C重合).
①AE=EF是否總成立?請(qǐng)給出證明;
②在如圖2的直角坐標(biāo)系中,當(dāng)點(diǎn)E滑動(dòng)到某處時(shí),點(diǎn)F恰好落在拋物線y=-x2+x+1上,求此時(shí)點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知:正方形ABCD邊長(zhǎng)為1,E、F、G、H分別為各邊上的點(diǎn),且AE=BF=CG=DH,設(shè)小正方形EFGH的面積為s,AE為x,則s關(guān)于x的函數(shù)圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2 m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x-6)2+h.已知球網(wǎng)與O點(diǎn)的水平距離為9 m,高度為2.43 m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18 m.

(1)當(dāng)h=2.6時(shí),求y與x的關(guān)系式(不要求寫出自變量x的取值范圍)
(2)當(dāng)h=2.6時(shí),球能否越過(guò)球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知△OAB的頂點(diǎn)A(-6,0),B(0,2),O是坐標(biāo)原點(diǎn), 將△OAB繞點(diǎn)O按順時(shí)針旋轉(zhuǎn)90°,得到△ODC.

(1)寫出C點(diǎn)的坐標(biāo)為          ;
(2)設(shè)過(guò)A,D,C三點(diǎn)的拋物線的解析式為,求其解析式?
(3)證明AB⊥BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某賓館有30個(gè)房間供游客住宿,當(dāng)每個(gè)房間的房?jī)r(jià)為每天120元時(shí),房間會(huì)全部住滿.當(dāng)每個(gè)房間每天的房?jī)r(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.賓館需對(duì)游客居住的每個(gè)房間每天支出20元的各種費(fèi)用.根據(jù)規(guī)定,每個(gè)房間每天的房?jī)r(jià)不得高于210元.設(shè)每個(gè)房間的房?jī)r(jià)增加x元(x為10的正整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤(rùn)為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個(gè)房間時(shí),賓館的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案