已知矩形ABCD和點P,當點P在BC上任一位置(如圖(1)所示)時,易證得結(jié)論:,請你探究:當點P分別在圖(2)、圖(3)中的位置時,又有怎樣的數(shù)量關(guān)系?請你寫出對上述兩種情況的探究結(jié)論,并利用圖(2)證明你的結(jié)論.
答:對圖(2)的探究結(jié)論為__________.
對圖(3)的探究結(jié)論為__________.
證明:如圖(2)
結(jié)論均是PA2+PC2=PB2+PD2
證明:如圖2過點P作MN⊥AD于點M,交BC于點N,
因為AD∥BC,MN⊥AD,
所以MN⊥BC
在Rt△AMP中,PA2=PM2+MA2
在Rt△BNP中,PB2=PN2+BN2
在Rt△DMP中,PD2=DM2+PM2
在Rt△CNP中,PC2=PN2+NC2
所以PA2+PC2=PM2+MA2+PN2+NC2
PB2+PD2=PM2+DM2+BN2+PN2
因為MN⊥AD,MN⊥NC,DC⊥BC,
所以四邊形MNCD是矩形所以MD=NC,
同理AM = BN,
所以PM2+MA2+PN2+NC2=PM2+DM2+BN2+PN2
即PA2+PC2=PB2+PD2
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知矩形ABCD和點P,當點P在圖1中的位置時,則有結(jié)論:S△PBC=S△PAC+S△PCD
理由:過點P作EF垂直BC,分別交AD、BC于E、F兩點.
∵S△PBC+S△PAD=
1
2
BC•PF+
1
2
AD•PE=
1
2
BC(PF+PE)=
1
2
BC•EF=
1
2
S矩形ABCD
又∵S△PAC+S△PCD+S△PAD=
1
2
S矩形ABCD,∴S△PBC+S△PAD=S△PAC+S△PCD+S△PAD,∴S△PBC=S△PAC+S△PCD
請你參考上述信息,當點P分別在圖2,圖3中的位置時,S△PBC、S△PAC、S△PCD又有怎樣的數(shù)量關(guān)系?請寫出你對上述兩種情況的猜想,并選擇其中一種情況的猜想給予證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、已知矩形ABCD和點P,當點P在BC上任一位置(如圖(1)所示)時,易證得結(jié)論:PA2+PC2=PB2+PD2,請你探究:當點P分別在圖(2)、圖(3)中的位置時,PA2、PB2、PC2和PD2又有怎樣的數(shù)量關(guān)系請你寫出對上述兩種情況的探究結(jié)論,并利用圖(2)證明你的結(jié)論.
答:對圖(2)的探究結(jié)論為
PA2+PC2=PB2+PD2
;
對圖(3)的探究結(jié)論為
PA2+PC2=PB2+PD2
;
證明:如圖(2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知矩形ABCD和點P,當點P在邊BC上任一位置(如圖①所示)時,易證得結(jié)論:PA2+PC2=PB2+PD2
以下請你探究:當P點分別在圖②、圖③中的位置時,即P在矩形ABCD的內(nèi)部和外部時,線段PA2,PB2,PC2,PD2又有怎樣的數(shù)量關(guān)系?請你寫出對上述兩種情況的探究結(jié)論,并證明圖②(P在矩形ABCD的內(nèi)部)的結(jié)論.

答:對圖②的探究結(jié)論為
PA2+PC2=PB2+PD2
PA2+PC2=PB2+PD2
,對圖③的探究結(jié)論為
PA2+PC2=PB2+PD2
PA2+PC2=PB2+PD2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知矩形ABCD和點P,當點P在圖1中的位置時,則有結(jié)論:S△PBC=S△PAC+

S△PCD   理由:過點P作EF垂直BC,分別交AD、BC于E、F兩點.

∵ S△PBC+S△PAD=BC·PF+AD·PE=BC(PF+PE)=BC·EF=S矩形ABCD

又∵ S△PAC+S△PCD+S△PAD=S矩形ABCD

∴S△PBC+S△PAD=S△PAC+S△PCD+S△PAD

∴ S△PBC=S△PAC+S△PCD

請你參考上述信息,當點P分別在圖2、圖3中的位置時,S△PBC、S△PAC、S△PCD

有怎樣的數(shù)量關(guān)系?請寫出你對上述兩種情況的猜想,并選擇其中一種情況的猜想給

予證明.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年遼寧大石橋市九年級中考模擬(四)數(shù)學試卷(解析版) 題型:解答題

已知矩形ABCD和點P,當點P在圖1中的位置時,則有結(jié)論:S△PBC=S△PAC+

S△PCD   理由:過點P作EF垂直BC,分別交AD、BC于E、F兩點.

∵ S△PBC+S△PAD=BC·PF+AD·PE=BC(PF+PE)=BC·EF=S矩形ABCD

又∵ S△PAC+S△PCD+S△PAD=S矩形ABCD

∴S△PBC+S△PAD=S△PAC+S△PCD+S△PAD

∴ S△PBC=S△PAC+S△PCD

請你參考上述信息,當點P分別在圖2、圖3中的位置時,S△PBC、S△PAC、S△PCD

有怎樣的數(shù)量關(guān)系?請寫出你對上述兩種情況的猜想,并選擇其中一種情況的猜想給

予證明.

 

查看答案和解析>>

同步練習冊答案