【題目】閱讀下列材料:在分式中,對于只含有一個字母的分式,當分子的次數(shù)小于分母的次數(shù)時,我們稱之為真分式,如:。當分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為假分式,如:。假分式可以化為整式與真分式和的形式,我們也稱之為帶分式,如:。

解決問題:

1)下列分式中屬于真分式的是(

A. B. C. D.

2)將假分式分別化為帶分式;

3)若假分式的值為整數(shù),請直接寫出所有符合條件的整數(shù)x的值。

【答案】1C

2,;

3x可能的整數(shù)值為0-2,-4,-6.

【解析】

1)根據(jù)真分式的定義,即可選出正確答案;

2)利用題中的方法把分子分別變形為,然后寫成帶分式即可;

3)先把分式化為帶分式,然后利用有理數(shù)的整除性求解.

1A.分子的次數(shù)為2,分母的次數(shù)為1,所以錯誤;

B. 分子的次數(shù)為1,分母的次數(shù)為1,故錯誤;

C. 分子的次數(shù)為0,分母的次數(shù)為1,故正確;

D. 分子的次數(shù)為2,分母的次數(shù)為2,故錯誤;

所以選C;

2,

3

∵該分式的值為整數(shù),

的值為整數(shù),

所以x+3可取得整數(shù)值為±3±1,

x可能的整數(shù)值為0,-2-4,-6.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,網格中每一個小正方形的邊長為1個單位長度

(1) 請在所給的網格內畫出以線段AB、BC為邊的□ABCD并寫出點D的坐標_________

(2) 線段BD的長為_____________

(3) CAB的距離為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明家今年種植的“紅燈”櫻桃喜獲豐收,采摘上市20天全部銷售完,小明對銷售情況進行跟蹤記錄,并將記錄情況繪成圖象,日銷售量y(單位:千克)與上市時間x(單位:天)的函數(shù)關系如圖1所示,櫻桃價格z(單位:元/千克)與上市時間x(單位:天)的函數(shù)關系式如圖2所示.

(1)觀察圖象,直接寫出日銷售量的最大值;

(2)求小明家櫻桃的日銷售量y與上市時間x的函數(shù)解析式;

(3)試比較第10天與第12天的銷售金額哪天多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.

其中正確結論的個數(shù)是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列說法中 0.090.81的平方根;②-9的平方根是±3;③的算術平方根是-5;④是一個負數(shù);⑤0的相反數(shù)和倒數(shù)都是0;⑥;⑦如果一個數(shù)的立方根是這個數(shù)的本身,那么這個數(shù)是10;⑧全體實數(shù)和數(shù)軸上的點一一對應.正確的有_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】美是一種感覺,本應沒有什么客觀的標準,但在自然界里,物體形狀的比例卻提供了在的稱與協(xié)調上的一種美感的參考,在數(shù)學上,這個比例稱為黃金分割.在人體由腳底至肚臍的長度與身高的比例上,肚臍是理想的黃金分割點,也就是說,若此比值越接近就越給別人一種美的感覺. 某女士身高為,腳底至肚臍的長度與身高的比為為了追求美,地想利用高跟鞋達到這一效果 ,那么她選的高跟鞋的高度約為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實踐活動小組要測量旗桿的高度,現(xiàn)有標桿、皮尺.小明同學站在旗桿一側,通過觀視和其他同學的測量,求出了旗桿的高度,請完成下列問題:

(1)小明的站點,旗桿的接地點,標桿的接地點,三點應滿足什么關系?

(2)在測量過程中,如果標桿的位置確定,小明應該通過移動位置,直到小明的視點與點 在同直一線上為止;

(3)他們都測得了哪些數(shù)據(jù)就能計算出旗桿的高度?請你用小寫字母表示這些數(shù)據(jù)(不允許測量多余的數(shù)據(jù))

(4)請用(3)中的數(shù)據(jù),直接表示出旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一張長方形紙片的長為m,寬為nm3n)如圖1,先在其兩端分別折出兩個正方形(ABEFCDGH)后展開(如圖2),再分別將長方形ABHG、CDFE對折,折痕分別為MN、PQ(如圖3),則長方形MNQP的面積為(  )

A.n2B.nmnC.nm2nD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,,并且滿足.一動點從點出發(fā),在線段上以每秒個單位長度的速度向點移動;動點從點出發(fā)在線段上以每秒個單位長度的速度向點運動,點分別從點同時出發(fā),當點運動到點時,點隨之停止運動.設運動時間為()

(1)兩點的坐標;

(2)為何值時,四邊形是平行四邊形?并求出此時兩點的坐標.

(3)為何值時,是以為腰的等腰三角形?并求出此時兩點的坐標.

查看答案和解析>>

同步練習冊答案