【題目】計(jì)算:6sin60°﹣( 2 +|2﹣ |.

【答案】解:6sin60°﹣( 2 +|2﹣ | =6× ﹣9﹣2 +2﹣
=3 ﹣9﹣2 +2﹣
=﹣7
【解析】首先計(jì)算乘方和開(kāi)方,然后計(jì)算乘法,最后從左向右依次計(jì)算,求出算式的值是多少即可.
【考點(diǎn)精析】關(guān)于本題考查的整數(shù)指數(shù)冪的運(yùn)算性質(zhì)和特殊角的三角函數(shù)值,需要了解aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù));分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l與⊙O相離,過(guò)點(diǎn)O作OA⊥l,垂足為A,OA交⊙O于點(diǎn)B,點(diǎn)C在直線l上,連接CB并延長(zhǎng)交⊙O于點(diǎn)D,在直線l上另取一點(diǎn)P,使∠PCD=∠PDC.
(1)求證:PD是⊙O的切線;
(2)若AC=1,AB=2,PD=6,求⊙O的半徑r和△PCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】填空,完成下列說(shuō)理過(guò)程

如圖,∠AOB90°,∠COD90°OA平分∠DOE,若∠BOC20°,求∠COE的度數(shù)

解:因?yàn)椤?/span>AOB90°

所以∠BOC+AOC90°

因?yàn)椤?/span>COD90°

所以∠AOD+AOC90°

所以∠BOC=∠AOD    

因?yàn)椤?/span>BOC20°

所以∠AOD20°

因?yàn)?/span>OA平分∠DOE

所以∠   2AOD   °    

所以∠COE=∠COD﹣∠DOE   °

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列例題

解方程:|x|+|2x1|5

解:①當(dāng)x≥0.5時(shí),原方程可化為:x+2x15,它的解是x2;

②當(dāng)0≤x0.5時(shí),原方程可化為:x2x+15,解之,得x=﹣4,

經(jīng)檢驗(yàn)x不合題意,舍去.

③當(dāng)x0時(shí),原方程可化為:﹣x2x+15,它的解是x=﹣

所以原方程的解是x2x=﹣

1)根據(jù)上面的解題過(guò)程,寫出方程2|x1|x4的解.

2)根據(jù)上面的解題過(guò)程,解方程:2|x1||x|4

3)方程|x|2|x1|4是否有解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一條公路修到湖邊時(shí),需拐彎繞湖而過(guò),如果第一次拐的角∠A120°,第二次拐的角∠B150°,第三次拐的角是∠C,這時(shí)的道路恰好和第一次拐彎之前的道路平行,則∠C的大小是( )

A. 150° B. 130° C. 140° D. 120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有兩個(gè)實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若m為正整數(shù),求此方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABEF,則∠A、C、DE滿足的數(shù)量關(guān)系是(

A. ACDE=360°

B. ADCE

C. ACDE=180°

D. ECDA=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°, ∠ABC=60°,BD平分∠ABC,AD=6,AC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,BEGF,∠1=∠3,∠DBC=70°,求∠EDB的大。

閱讀下面的解答過(guò)程,并填空(理由或數(shù)學(xué)式)

解:∵BEGF(已知)

∴∠2=∠3(   )

∵∠1=∠3(   )

∴∠1=(   )(   )

DE∥(   )(   )

∴∠EDB+∠DBC=180°(   )

∴∠EDB=180°﹣∠DBC(等式性質(zhì))

∵∠DBC=(   )(已知)

∴∠EDB=180°﹣70°=110°

查看答案和解析>>

同步練習(xí)冊(cè)答案