【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,若∠BOD=88°,則∠BCD的度數(shù)是( 。

A.88°
B.92°
C.106°
D.136°

【答案】D
【解析】解:∵∠BOD=88°,
∴∠BAD=88°÷2=44°,
∵∠BAD+∠BCD=180°,
∴∠BCD=180°﹣44°=136°,
即∠BCD的度數(shù)是136°.
故選:D.
【考點精析】通過靈活運用圓周角定理和圓內(nèi)接四邊形的性質(zhì),掌握頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;把圓分成n(n≥3):1、依次連結各分點所得的多邊形是這個圓的內(nèi)接正n邊形2、經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的二次函數(shù) 的圖象中,觀察得出了下面五條信息:
;② ;③ ;④ ;⑤ ,
你認為其中正確信息的個數(shù)有個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線ABy軸交于點,與x軸交于點B,,直線CDy軸交于點D,與x軸交于點,,直線AB與直線CD交于點Q,E為直線CD上一動點,過點Ex軸的垂線,交直線AB于點M,交x軸于點N,連接AEBE

求直線AB、CD的解析式及點Q的坐標;

E點運動到Q點的右側,且的面積為時,在y軸上有一動點P,直線AB上有一動點R,當的周長最小時,求點P的坐標及周長的最小值.

問的條件下,如圖2繞著點B逆時針旋轉得到,使點M與點G重合,點N與點H重合,再將沿著直線AB平移,記平移中的,在平移過程中,設直線x軸交于點F,是否存在這樣的點F,使得為等腰三角形?若存在,求出此時點F的坐標;若不存在,說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,花叢中有一路燈桿AB,在燈光下,大華在D點處的影長DE=3米,沿BD方向行走到達G點,DG=5米,這時大華的影長GH=5米.如果大華的身高為2米,求路燈桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CDABD,點FBC上任意一點,FEABE,且∠1=∠2.求證:∠3=ACB

下面給出了部分證明過程和理由,請補全所有內(nèi)容.

證明:∵CDABFEAB

∴∠BDC=BEF=90°

EFDC

∴∠2=

又∵∠2=1(已知)

∴∠1= (等量代換)

DGBC

∴∠3=ACB(兩直線平行,同位角相等)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】作圖題(尺規(guī)作圖,不寫作法,但保留作圖痕跡).

如圖,已知∠α和∠β,求作∠AOB,使∠AOB=∠α+∠β

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,直線y1=2x﹣2與坐標軸交于A、B兩點,與雙曲線y2= (x>0)交于點C,過點C作CD⊥x軸,且OA=AD,則以下結論: ①當x>0時,y1隨x的增大而增大,y2隨x的增大而減。
②k=4;
③當0<x<2時,y1<y2;
④如圖,當x=4時,EF=4.
其中正確結論的個數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,A(a0),C(b,2),且滿足(a+2)2+=0,過CCBx軸于B

(1)求三角形ABC的面積;

(2)如圖②,若過BBDACy軸于D,且AE,DE分別平分∠CAB,∠ODB,求∠AED的度數(shù);

(3)y軸上是否存在點P,使得三角形ACP和三角形ABC的面積相等?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2-(2k+1)x+k2+2k=0有兩個實數(shù)根x1 , x2
(1)求實數(shù)k的取值范圍;
(2)是否存在實數(shù)k,使得x1·x2-x12-x22≥0成立?若存在,請求出k的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案