如圖,拋物線l1:y1=a(x+1)2+2與l2:y2=-(x-2)2-1交于點(diǎn)B(1,-2),且分別與y軸交于點(diǎn)D、E.過(guò)點(diǎn)B作x軸的平行線,交拋物線于點(diǎn)A、C,則以下結(jié)論:
①無(wú)論x取何值,y2總是負(fù)數(shù);
②l2可由l1向右平移3個(gè)單位,再向下平移3個(gè)單位得到;
③當(dāng)-3<x<1時(shí),隨著x的增大,y1-y2的值先增大后減。
④四邊形AECD為正方形.
其中正確的是


  1. A.
    1個(gè)
  2. B.
    2個(gè)
  3. C.
    3個(gè)
  4. D.
    4個(gè)
C
分析:①由非負(fù)數(shù)的性質(zhì),即可證得y2=-(x-2)2-1≤-1<0,即可得無(wú)論x取何值,y2總是負(fù)數(shù);
②由拋物線l1:y1=a(x+1)2+2與l2:y2=-(x-2)2-1交于點(diǎn)B(1,-2),可求得a的值,然后由拋物線的平移的性質(zhì),即可得l2可由l1向右平移3個(gè)單位,再向下平移3個(gè)單位得到;
③由 y1-y2=-(x+1)2+2-[-(x-2)2-1]=-6x+6,可得隨著x的增大,y1-y2的值減;
④首先求得點(diǎn)A,C,D,E的坐標(biāo),即可證得AF=CF=DF=EF,又由AC⊥DE,即可證得四邊形AECD為正方形.
解答:①∵(x-2)2≥0,
∴-(x-2)2≤0,
∴y2=-(x-2)2-1≤-1<0,
∴無(wú)論x取何值,y2總是負(fù)數(shù);
故①正確;
②∵拋物線l1:y1=a(x+1)2+2與l2:y2=-(x-2)2-1交于點(diǎn)B(1,-2),
∴當(dāng)x=1時(shí),y=-2,
即-2=a(1+1)2+2,
解得:a=-1;
∴y1=-(x+1)2+2,
∴l(xiāng)2可由l1向右平移3個(gè)單位,再向下平移3個(gè)單位得到;
故②正確;
③∵y1-y2=-(x+1)2+2-[-(x-2)2-1]=-6x+6,
∴隨著x的增大,y1-y2的值減。
故③錯(cuò)誤;
④設(shè)AC與DE交于點(diǎn)F,
∵當(dāng)y=-2時(shí),-(x+1)2+2=-2,
解得:x=-3或x=1,
∴點(diǎn)A(-3,-2),
當(dāng)y=-2時(shí),-(x-2)2-1=-2,
解得:x=3或x=1,
∴點(diǎn)C(3,-2),
∴AF=CF=3,AC=6,
當(dāng)x=0時(shí),y1=1,y2=-5,
∴DE=6,DF=EF=3,
∴四邊形AECD為平行四邊形,
∴AC=DE,
∴四邊形AECD為矩形,
∵AC⊥DE,
∴四邊形AECD為正方形.
故④正確.
故選C.
點(diǎn)評(píng):此題考查了待定系數(shù)法求二次函數(shù)的解析式、非負(fù)數(shù)的性質(zhì)、二次函數(shù)的平移以及正方形的判定.此題難度較大,注意掌握方程思想與數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線l1:y=-x2平移得到拋物線l2,且經(jīng)過(guò)點(diǎn)O(0,0)和點(diǎn)A(4,0),l2的頂點(diǎn)為點(diǎn)B,它的對(duì)稱軸與l2相交于點(diǎn)C,設(shè)l1、l2與BC圍成的陰影部分面積為S,解答下列問(wèn)題:
(1)求l2表示的函數(shù)解析式及它的對(duì)稱軸,頂點(diǎn)的坐標(biāo).
(2)求點(diǎn)C的坐標(biāo),并直接寫(xiě)出S的值.
(3)在直線AC上是否存在點(diǎn)P,使得S△POA=
1
2
S?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【參考公式:拋物線y=ax2+bx+c 的對(duì)稱軸是x=-
b
2a
,頂點(diǎn)坐標(biāo)是(-
b
2a
,
4ac-b2
4a
)】.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

30、如圖,拋物線L1:y=-x2-2x+3交x軸于A,B兩點(diǎn),交y軸于M點(diǎn).將拋物線L1向右平移2個(gè)單位后得到拋物線L2,L2交x軸于C,D兩點(diǎn).
(1)求拋物線L2對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)拋物線L1或L2在x軸上方的部分是否存在點(diǎn)N,使以A,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)P是拋物線L1上的一個(gè)動(dòng)點(diǎn)(P不與點(diǎn)A,B重合),那么點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)Q是否在拋物線L2上?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線L1:y=-x2-4x+5交x軸于A、B,交y軸于C,頂點(diǎn)為D.
(1)求A、C、B、D四點(diǎn)的坐標(biāo)及對(duì)稱軸;
(2)若拋物線L2是拋物線L1沿x軸向左平移3個(gè)單位得到的,求拋物線經(jīng)L2對(duì)應(yīng)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖將拋物線L1:y=x2+2x+3向下平移10個(gè)單位得L2,而l1、l2的表達(dá)式分別是l1:x=-2,l2x=
12
,則圖中陰影部分的面積是
25
25

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線l1:y1=a(x+1)2+2與l2:y2=-(x-2)2-1交于點(diǎn)B(1,-2),且分別與y軸交于點(diǎn)D、E.過(guò)點(diǎn)B作x軸的平行線,交拋物線于點(diǎn)A、C,則以下結(jié)論:
①無(wú)論x取何值,y2總是負(fù)數(shù);
②l2可由l1向右平移3個(gè)單位,再向下平移3個(gè)單位得到;
③當(dāng)-3<x<1時(shí),隨著x的增大,y1-y2的值先增大后減小;
④四邊形AECD為正方形.
其中正確的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案