(2005•岳陽)如圖,已知DE垂直平分AB,分別交AB、BC于D、E兩點(diǎn),AE平分∠BAC,∠B=30°,BE=4,求AC的長.

【答案】分析:根據(jù)線段垂直平分線的性質(zhì)得AE=BE=4;∠AEC=2∠B=60°.易求AC.
解答:解:DE垂直平分AB,
∴BE=AE=4.
故∠AEC=2∠B=60°.
sin60°=
∵AC=2
點(diǎn)評(píng):本題考查的是線段垂直平分線的性質(zhì)(垂直平分線上任意一點(diǎn),和線段兩端點(diǎn)的距離相等)有關(guān)知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2005•岳陽)如圖,拋物線y=-x2+x+6,與x軸交于A、B兩點(diǎn),與y軸相交于C點(diǎn).
(1)求△ABC的面積;
(2)已知E點(diǎn)(0,-3),在第一象限的拋物線上取點(diǎn)D,連接DE,使DE被x軸平分,試判定四邊形ACDE的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年湖南省岳陽市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•岳陽)如圖,拋物線y=-x2+x+6,與x軸交于A、B兩點(diǎn),與y軸相交于C點(diǎn).
(1)求△ABC的面積;
(2)已知E點(diǎn)(0,-3),在第一象限的拋物線上取點(diǎn)D,連接DE,使DE被x軸平分,試判定四邊形ACDE的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圖形的旋轉(zhuǎn)》(03)(解析版) 題型:解答題

(2005•岳陽)如圖,已知正方形ABCD,把一個(gè)直角與正方形疊合,使直角頂點(diǎn)與A重合,兩邊分別與AB、AD重合.將直角繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),當(dāng)直角的一邊與BC相交于E點(diǎn),另一邊與CD的延長線相交于F點(diǎn)時(shí),作∠EAF的平分線交CD于G,連接EG.
求證:(1)BE=DF;(2)BE+DG=EG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2005•岳陽)如圖,△ABC中,∠BAC=90°,AB=AC=1,點(diǎn)D是BC上一個(gè)動(dòng)點(diǎn)(不與B、C重合),在AC上取E點(diǎn),使∠ADE=45度.
(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng):△ADE是等腰三角形時(shí),求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年湖南省岳陽市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•岳陽)如圖,△ABC中,∠BAC=90°,AB=AC=1,點(diǎn)D是BC上一個(gè)動(dòng)點(diǎn)(不與B、C重合),在AC上取E點(diǎn),使∠ADE=45度.
(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng):△ADE是等腰三角形時(shí),求AE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案