【題目】拋物線 y=2x2﹣4x+m 的圖象的部分如圖所示,則關(guān)于 x 的一元二次方程 2x2﹣4x+m=0 的解是 x1=______,x2=_________

【答案】-13

【解析】

由圖象可知,拋物線 y=2x2﹣4x+m x 軸的一個交點(diǎn)為(﹣1,0),對稱軸為x=1,根據(jù)拋物線的對稱性可求拋物線與 x 軸的另一交點(diǎn)坐標(biāo),從而確定一元二次方程 2x2﹣4x+m=0 的解.

觀察圖象可知,拋物線 y=2x2﹣4x+m x 軸的一個交點(diǎn)為(﹣1,0),對稱軸為x=1,

∴拋物線與x軸的另一交點(diǎn)坐標(biāo)為(3,0),

∴一元二次方程 2x2﹣4x+m=0 的解為 x1=﹣1,x2=3.

故本題答案為:x1=﹣1,x2=3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在中,,點(diǎn)是邊的中點(diǎn).以為直徑作圓,交邊于點(diǎn),連接,交于點(diǎn)

求證:是圓的切線;

當(dāng)時,求證:;

如圖,當(dāng)是圓的切線,中點(diǎn),,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店將進(jìn)價為8元的商品按每件10元售出,每天可售出200件,現(xiàn)在采取提高商品售價減少銷售量的辦法增加利潤,如果這種商品每件的銷售價每提高1元,其每天的銷售量就減少20.

(1)當(dāng)售價定為12元時,每天可售出________件;

(2)要使每天利潤達(dá)到640元,則每件售價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC,∠B=90,AB=6cm,BC=8cm.

(1)點(diǎn)P從點(diǎn)A開始沿AB邊向B以1cm/s的速度移動,點(diǎn)Q從B點(diǎn)開始沿BC邊向點(diǎn)C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā).

①經(jīng)過幾秒,使△PBQ的面積等于8?

②線段PQ能否將△ABC分成面積相等的兩部分?若能,求出運(yùn)動時間;若不能說明理由.

(2)若P點(diǎn)沿射線AB方向從A點(diǎn)出發(fā)以1cm/s的速度移動,點(diǎn)Q沿射線CB方向從C點(diǎn)出發(fā)以2cm/s的速度移動,P,Q同時出發(fā),問幾秒后,△PBQ的面積為1?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線 y1=﹣2x2+2,直線 y2=2x+2,當(dāng) x 任取一值時,x 對應(yīng)的函數(shù)值分別為 y1、y2.若 y1≠y2,取 y1、y2 中的較小值記為 M;若 y1=y2,記 M=y1=y2.例如;當(dāng) x=1 時,y1=0,y2=4,y1<y2此時 M=0,下列判斷中正確的是(

①當(dāng) x>0 ,y1>y2;②當(dāng) x<0 ,x 值越大,M 值越小;③使得 M 大于 2 x 值不存在;④使得 M=1 x 值是﹣

A. ①②③ B. ①④ C. ②③④ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為養(yǎng)成學(xué)生課外閱讀的習(xí)慣,各學(xué)校普遍開展了“我的夢.中國夢”課外閱讀活動.某校為了解七年級1200名學(xué)生課外日閱讀所用時間情況,從中隨機(jī)抽查了部分同學(xué),進(jìn)行了相關(guān)統(tǒng)計,整理并繪制出如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖,請根據(jù)圖表信息解答下列問題:

(1)表中 a= ,b=

(2)請補(bǔ)全頻數(shù)分布直方圖中空缺的部分;

(3)樣本中,學(xué)生日閱讀所用時間的中位數(shù)落在第 組;

(4)請估計該校七年級學(xué)生日閱讀量不足 1 小時的人數(shù).

組別

時間段(小時)

頻數(shù)

頻率

1

0≤x<0.5

10

0.05

2

0.5≤x<1.0

20

0.10

3

1.0≤x<1.5

80

b

4

1.5≤x<2.0

a

0.35

5

2.0≤x<2.5

12

0.06

6

2.5≤x<3.0

8

0.04

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個三角形可被剖成兩個等腰三角形,原三角形的一個內(nèi)角為36度,則原三角形最大內(nèi)角的所有可能值為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分9分)如圖,點(diǎn)ORt△ABC斜邊AB上的一點(diǎn),以OA為半徑的⊙OBC切于點(diǎn)D,與AC交于點(diǎn)E,連接AD

1)求證:AD平分∠BAC

2)若∠BAC = 60°,OA = 2,求陰影部分的面積(結(jié)果保留).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名工人分別加工a個同種零件.甲先加工一段時間,由于機(jī)器故障進(jìn)行維修后繼續(xù)按原來的工作效率進(jìn)行加工,當(dāng)甲加工小時后.乙開始加工,乙的工作效率是甲的工作效率的3倍.下圖分別表示甲、乙加工零件的數(shù)量y(個)與甲工作時間x(時)的函數(shù)圖象.解讀信息:

(1)甲的工作效率為  /時,維修機(jī)器用了  小時

(2)乙的工作效率是  /時;問題解決

①乙加工多長時間與甲加工的零件數(shù)量相同,并求此時乙加工零件的個數(shù);

②若乙比甲早10分鐘完成任務(wù),求a的值.

查看答案和解析>>

同步練習(xí)冊答案