【題目】如圖,已知在Rt△ABC中,D是斜邊AB的中點(diǎn),AC=4,BC=2,將△ACD沿直線(xiàn)CD折疊,點(diǎn)A落在點(diǎn)E處,聯(lián)結(jié)AE,那么線(xiàn)段AE的長(zhǎng)度等于 .
【答案】
【解析】解:如圖所示:延長(zhǎng)CD交AE于F, 由折疊的性質(zhì)得:CF⊥AE,AC=EC,
∴∠AFC=90°,AF=EF,
∵在Rt△ABC中,∠ACB=90°,
∴AB= = =2 ,
∵D是斜邊AB的中點(diǎn),
∴CD= AB=AD,
∴∠DCA=∠DAC,
∵∠AFC=∠ACB=90°,
∴△AFC∽△BCA,
∴ ,
即 ,
∴AF= ,
∴AE=2AF= ;
所以答案是: .
【考點(diǎn)精析】利用翻折變換(折疊問(wèn)題)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知折疊是一種對(duì)稱(chēng)變換,它屬于軸對(duì)稱(chēng),對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)的連線(xiàn)的垂直平分線(xiàn),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2).延長(zhǎng)CB交x軸于點(diǎn)A1 , 作第1個(gè)正方形A1B1C1C;延長(zhǎng)C1B1交x軸于點(diǎn)A2 , 作第2個(gè)正方形A2B2C2C1 , …,按這樣的規(guī)律進(jìn)行下去,第2016個(gè)正方形的面積是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,李老師設(shè)計(jì)了一個(gè)探究杠桿平衡條件的實(shí)驗(yàn):在一個(gè)自制類(lèi)似天平的儀器的左邊固定托盤(pán)A中放置一個(gè)重物,在右邊的活動(dòng)托盤(pán)B(可左右移動(dòng))中放置一定質(zhì)量的砝碼,使得儀器左右平衡,改變活動(dòng)托盤(pán)B與點(diǎn)O的距離x(cm),觀察活動(dòng)托盤(pán)B中砝碼的質(zhì)量y(g)的變化情況.實(shí)驗(yàn)數(shù)據(jù)記錄如下表:
x(cm) | 10 | 15 | 20 | 25 | 30 |
y(g) | 30 | 20 | 15 | 12 | 10 |
(1)把上表中(x,y)的各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在坐標(biāo)系中描出相應(yīng)的點(diǎn),用平滑曲線(xiàn)連接這些點(diǎn);
(2)觀察所畫(huà)的圖象,猜測(cè)y與x之間的函數(shù)關(guān)系,求出函數(shù)關(guān)系式并加以驗(yàn)證;
(3)當(dāng)砝碼的質(zhì)量為24g時(shí),活動(dòng)托盤(pán)B與點(diǎn)O的距離是多少cm?
(4)當(dāng)活動(dòng)托盤(pán)B往左移動(dòng)時(shí),應(yīng)往活動(dòng)托盤(pán)B中添加還是減少砝碼?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形AOB的直角頂點(diǎn)A在第四象限,頂點(diǎn)B(0,﹣2),點(diǎn)C(0,1),點(diǎn)D在邊AB上,連接CD交OA于點(diǎn)E,反比例函數(shù) 的圖象經(jīng)過(guò)點(diǎn)D,若△ADE和△OCE的面積相等,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=ax2+bx+c(a≠0)經(jīng)過(guò)點(diǎn)A(1,0),B(3,0),C(0,3).
(1)求拋物線(xiàn)的表達(dá)式及頂點(diǎn)D的坐標(biāo);
(2)如圖甲,點(diǎn)P是直線(xiàn)BC上方拋物線(xiàn)上一動(dòng)點(diǎn),過(guò)點(diǎn)P作y軸的平行線(xiàn),交直線(xiàn)BC于點(diǎn)E,是否存在一點(diǎn)P,使線(xiàn)段PE的長(zhǎng)最大?若存在,求出PE長(zhǎng)的最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)如圖乙,過(guò)點(diǎn)A作y軸的平行線(xiàn),交直線(xiàn)BC于點(diǎn)F,連接DA、DB四邊形OAFC沿射線(xiàn)CB方向運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)點(diǎn)C與點(diǎn)B重合時(shí)立即停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)過(guò)程中四邊形OAFC與四邊形ADBF重疊部分面積為S,請(qǐng)求出S與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的O與BC相交于點(diǎn)D,與CA的延長(zhǎng)線(xiàn)相交于點(diǎn)E,過(guò)點(diǎn)D作DF⊥AC于點(diǎn)F.
(1)試說(shuō)明DF是⊙O的切線(xiàn);
(2)若AC=3AE=6,求tanC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,AB=6,AD=2 ,E是AB邊上一點(diǎn),AE=2,F(xiàn)是直線(xiàn)CD上一動(dòng)點(diǎn),將△AEF沿直線(xiàn)EF折疊,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)A′,當(dāng)點(diǎn)E、A′、C三點(diǎn)在一條直線(xiàn)上時(shí),DF的長(zhǎng)度為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)y=ax2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表:
x | … | 1 | 2 | 3 | 4 | 5 | … |
y | … | 0 | ﹣3 | ﹣6 | ﹣6 | ﹣3 | … |
從上表可知,下列說(shuō)法中正確的有( )
① =6;②函數(shù)y=ax2+bx+c的最小值為﹣6;③拋物線(xiàn)的對(duì)稱(chēng)軸是x= ;④方程ax2+bx+c=0有兩個(gè)正整數(shù)解.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB<BC,E為CD邊的中點(diǎn),將△ADE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)180°,點(diǎn)D的對(duì)應(yīng)點(diǎn)為C,點(diǎn)A的對(duì)應(yīng)點(diǎn)為F,過(guò)點(diǎn)E作ME⊥AF交BC于點(diǎn)M,連接AM、BD交于點(diǎn)N,現(xiàn)有下列結(jié)論: ①AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④點(diǎn)N為△ABM的外心.其中正確的個(gè)數(shù)為( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com