【題目】已知:如圖1.正方形ABCD,過點A作∠EAF=90°,兩邊分別交直線BC于點E,交線段CD于點F,G為AE中點,連接BG
(1)求證:△ABE≌△ADF
(2)如圖2,過點G作BG的垂線交對角線AC于點H,求證:GH=GB;
(3)如圖3,連接HF,若CH=3AH,AD=2,求線段HF的長.
【答案】(1)證明見解析;(2)證明見解析;(3)5.
【解析】試題分析:(1)如圖1中,由△ABE≌△ADF,推出∠AFD=∠E,由AG=GE,推出GB=GE=GA,推出∠E=∠GBE=∠AFD,由∠GBE+∠GBC=180°,推出∠AFD+∠GBC=180°即可;
(2)如圖2中,連接BD交AC于O,連接OG、BH、取BH的中點K,連接GK、OK.只要證明O、H、G、B四點共圓,由AG=GE,AO=OC.推出OG∥CE,推出∠GOB=∠OBC=45°,即可解決問題;
(3)如圖3中,如圖3中,設OG交AB于T,GH交AB于P.,作HM⊥DF于M.只要證明∠EAB=∠GBP=∠PGT=∠HBO,推出tan∠EAB=tan∠HBO=,由CH=3AH,OA=OC=OB,推出tan∠EAB=tan∠HBO==,BE=DF=,在RtHMF中,利用勾股定理即可解決問題.
試題解析:(1)如圖1,∵四邊形ABCD是正方形,∴AB=AD,∠BAD=∠AEF=90°,
∴∠EAB=∠DAF,∵∠ABE=∠ADF=90°,∴△ABE≌△ADF,∴∠AFD=∠E,
∵AG=GE,∴GB=GE=GA,∴∠E=∠GBE=∠AFD,∵∠GBE+∠GBC=180°,∴∠AFD+∠GBC=180°;
(2)如圖2,連接BD交AC于O,連接OG、BH、取BH的中點K,連接GK、OK,
∵∠BGH=∠BOH=90°,BK=KH,∴GK=KH=OK=KB,∴O、H、G、B四點共圓,
∵AG=GE,AO=OC,∴OG∥CE,
∴∠GOB=∠OBC=45°,∴∠GOH=∠GBH=45°,∵∠BGH=90°,
∴∠GBH=∠GHB=45°, ∴GH=GB;
(3)如圖3,設OG交AB于T,GH交AB于P,作HM⊥DF于M,
∵OG∥EC,AB⊥CE,∴OG⊥AB,易證∠EAB=∠GBP=∠PGT=∠HBO,
∴tan∠EAB=tan∠HBO=,∵CH=3AH,OA=OC=OB,∴tan∠EAB=tan∠HBO==,
∵AB=AD=2,∴BE=DF=,在Rt△HMF中,易證FM=,HM=,
∴HF==5.
科目:初中數(shù)學 來源: 題型:
【題目】汽車公司有甲、乙兩種貨車可供租用,現(xiàn)有一批貨物要運往某地,貨主準備租用該公司貨車,已知以往甲、乙兩種貨車運貨情況如下表:
(1)甲、乙兩種貨車每輛可裝多少噸貨物?
(2)若貨主需要租用該公司的甲種貨車8輛,乙種貨車6輛,剛好運完這批貨物,如按每噸付運費50元,則貨主應付運費總額為多少元?
(3)若貨主共有20噸貨,計劃租用該公司的貨車正好(每輛車都滿載)把這批貨運完,該汽車公司共有哪幾種運貨方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,BD=CE,將線段AE沿AC翻折,得到線段AM,連結EM交AC于點N,連結DM、CM以下說法:①AD=AM,②∠MCA=60°,③CM=2CN,④MA=DM中,正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校初二開展英語拼寫大賽,愛國班和求知班根據(jù)初賽成績,各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績?nèi)鐖D所示:
(1)根據(jù)圖示填寫下表:
班級 | 中位數(shù)(分) | 眾數(shù)(分) | 平均數(shù)(分) |
愛國班 | 85 | ||
求知班 | 100 | 85 |
(2)結合兩班復賽成績的平均數(shù)和中位數(shù),分析哪個班級的復賽成績比較好?
(3)已知愛國班復賽成績的方差是70,請求出求知班復賽成績的方差,并說明哪個班成績比較穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,E為CA延長線上一點,D為AB上一點,F為外一點且連接DF,BF.
(1)當的度數(shù)是多少時,四邊形ADFE為菱形,請說明理由:
(2)當AB= 時,四邊形ACBF為正方形(請直接寫出)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.
其中正確結論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖四邊形ABCD是正方形,點E、F分別在線段BC、DC上,∠BAE=30°.若線段AE繞點A逆時針旋轉后與線段AF重合,則旋轉的角度是( 。
A.30°B.45°C.60°D.90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,工人師傅做一個矩形鋁合金窗框分下面三個步驟進行:
(1)先截出兩對符合規(guī)格的鋁合金窗料(如圖①所示),使 .
(2)擺放成如圖②的四邊形,則這時窗框的形狀是平行四邊形,它的依據(jù)是____________.
(3)將直尺緊靠窗框的一個角(如圖③),調(diào)整窗框的邊框,當直角尺的兩條直角邊與窗框無縫隙時(如圖④,說明窗框合格,這時窗框是矩形,它的依據(jù)是_____________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,已知點A(﹣3,0)、B(0,4),對△OAB連續(xù)作旋轉變換,依次得到△1、△2、△3、△4…,則△2013的直角頂點的坐標為______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com