梯形ABCD中,對角線AC、BD相交于點O,過O點的直線分別交上、下底于E、F,則在圖中與OE:OF的比值相等的線段比有


  1. A.
    4個
  2. B.
    5個
  3. C.
    7個
  4. D.
    8個
B
分析:由梯形ABCD中,AB∥CD,根據(jù)平行線分線段成比例定理,即可求得,根據(jù)相似三角形的判定方法,即可得△ODE∽△OBF,△OCE∽△OAF,△OCD∽△OAB,然后由相似三角形的對應(yīng)邊成比例,即可得,,則可求得答案.
解答:∵梯形ABCD中,AB∥CD,
,△ODE∽△OBF,△OCE∽△OAF,△OCD∽△OAB,
,

∴在圖中與OE:OF的比值相等的線段比有5個.
故選B.
點評:此題考查了平行線分線段成比例定理與相似三角形的判定與性質(zhì).此題難度不大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用,小心別漏解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

定義:到凸四邊形一組對邊距離相等,到另一組對邊距離也相等的點叫凸四邊形的準(zhǔn)內(nèi)心.如圖1,PH=PJ,PI=PG,則點P就是四邊形ABCD的準(zhǔn)內(nèi)心.

(1)如圖2,∠AFD與∠DEC的角平分線FP,EP相交于點P.求證:點P是四邊形ABCD的準(zhǔn)內(nèi)心.
(2)分別畫出圖3平行四邊形和圖4梯形的準(zhǔn)內(nèi)心.(作圖工具不限,不寫作法,但要有必要的說明)
(3)同樣,我們定義:到凸四邊形一組對角頂點的距離相等,到另一組對角頂點的距離也相等的點叫凸四邊形的準(zhǔn)外心.若QA=QC,QB=QD,則點Q就是四邊形ABCD的準(zhǔn)外心.那么你認(rèn)為Q是
AC的中垂線
AC的中垂線
BD的中垂線
BD的中垂線
的交點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

讓我們一起來探索平面直角坐標(biāo)系中平行四邊形的頂點的坐標(biāo)之間的關(guān)系.
第一步:數(shù)軸上兩點連線的中點表示的數(shù).自己畫一個數(shù)軸,如果點A、B分別表示-2、4,則線段AB的中點M表示的數(shù)是
1
1
. 再試幾個,我們發(fā)現(xiàn):數(shù)軸上連接兩點的線段的中點所表示的數(shù)是這兩點所表示數(shù)的平均數(shù).
第二步;平面直角坐標(biāo)系中兩點連線的中點的坐標(biāo)(如圖①)為便于探索,我們在第一象限內(nèi)取兩點A(x1,y1),B(x2,y2),取線段AB的中點M,分別作A、B到x軸的垂線段AE、BF,取EF的中點N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結(jié)論及梯形中位線的性質(zhì),我們可以得到點M的坐標(biāo)是(
x1+x2
2
x1+x2
2
y1+y2
2
y1+y2
2
 )(用x1,y1,x2,y2表示),AEFB是矩形時也可以.我們的結(jié)論是:平面直角坐標(biāo)系中連接兩點的線段的中點的橫(縱)坐標(biāo)等于這兩點的橫(縱)坐標(biāo)的平均數(shù).
第三步:平面直角坐標(biāo)系中平行四邊形的頂點坐標(biāo)之間的關(guān)系(如圖②)在平面直角坐標(biāo)系中畫一個平行四邊形ABCD,設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),則其對角線交點Q的坐標(biāo)可以表示為Q(
x1+x3
2
x1+x3
2
,
y1+y3
2
y1+y3
2
),也可以表示為Q(
x2+x4
2
x2+x4
2
,
y2+y4
2
y2+y4
2
 ),經(jīng)過比較,我們可以分別得出關(guān)于x1,x2,x3,x4及,y1,y2,y3,y4的兩個等式是
x1+x3=x2+x4
x1+x3=x2+x4
y1+y3=y2+y4
y1+y3=y2+y4
. 我們的結(jié)論是:平面直角坐標(biāo)系中平行四邊形的對角頂點的橫(縱)坐標(biāo)的
和相等
和相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1+1輕巧奪冠 同步講解 九年級數(shù)學(xué)(下) 華東師大版 題型:047

如圖(1),在梯形ABCD中,AD∥BC,對角錢AC與BD垂直相交于O,MN是梯形ABCD的中位線,∠DBC=

求證:AC=MN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

讓我們一起來探索平面直角坐標(biāo)系中平行四邊形的頂點的坐標(biāo)之間的關(guān)系。
第一步:數(shù)軸上兩點連線的中點表示的數(shù)
自己畫一個數(shù)軸,如果點A、B分別表示-2、4,則線段AB的中點M表示的數(shù)是                。 再試幾個,我們發(fā)現(xiàn):
數(shù)軸上連結(jié)兩點的線段的中點所表示的數(shù)是這兩點所表示數(shù)的平均數(shù)。
第二步;平面直角坐標(biāo)系中兩點連線的中點的坐標(biāo)(如圖①)
為便于探索,我們在第一象限內(nèi)取兩點A(x1,y1),B(x2,y2),取線段AB的中點M,分別作A、B到x軸的垂線段AE、BF,取EF的中點N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結(jié)論及梯形中位線的性質(zhì),我們可以得到點M的坐標(biāo)是(                                  )(用x1,y1,x2,y2表示),AEFB是矩形時也可以。我們的結(jié)論是:平面直角坐標(biāo)系中連結(jié)兩點的線段的中點的橫(縱)坐標(biāo)等于這兩點的橫(縱)坐標(biāo)的平均數(shù)。
    
圖①                    圖②
第三步:平面直角坐標(biāo)系中平行四邊形的頂點坐標(biāo)之間的關(guān)系(如圖②)
在平面直角坐標(biāo)系中畫一個平行四邊形ABCD,設(shè)A(x1,y1),B(x2,y2),C(x3,y3),
D(x4,y4),則其對角線交點Q的坐標(biāo)可以表示為Q(            ,         ),也可以表示為Q(             ,          ),經(jīng)過比較,我們可以分別得出關(guān)于x1,x2,x3,x4及,y1,y2,y3,y4的兩個等式是                                      。 我們的結(jié)論是:平面直角坐標(biāo)系中平行四邊形的對角頂點的橫(縱)坐標(biāo)的              。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省呂良中學(xué)八年級第一學(xué)期第二次階段檢測數(shù)學(xué)卷.doc 題型:解答題

讓我們一起來探索平面直角坐標(biāo)系中平行四邊形的頂點的坐標(biāo)之間的關(guān)系。
第一步:數(shù)軸上兩點連線的中點表示的數(shù)
自己畫一個數(shù)軸,如果點A、B分別表示-2、4,則線段AB的中點M表示的數(shù)是                。 再試幾個,我們發(fā)現(xiàn):
數(shù)軸上連結(jié)兩點的線段的中點所表示的數(shù)是這兩點所表示數(shù)的平均數(shù)。
第二步;平面直角坐標(biāo)系中兩點連線的中點的坐標(biāo)(如圖①)
為便于探索,我們在第一象限內(nèi)取兩點A(x1,y1),B(x2,y2),取線段AB的中點M,分別作A、B到x軸的垂線段AE、BF,取EF的中點N,則MN是梯形AEFB的中位線,故MN⊥x軸,利用第一步的結(jié)論及梯形中位線的性質(zhì),我們可以得到點M的坐標(biāo)是(             ,                     )(用x1,y1,x2,y2表示),AEFB是矩形時也可以。我們的結(jié)論是:平面直角坐標(biāo)系中連結(jié)兩點的線段的中點的橫(縱)坐標(biāo)等于這兩點的橫(縱)坐標(biāo)的平均數(shù)。
    
圖①                    圖②
第三步:平面直角坐標(biāo)系中平行四邊形的頂點坐標(biāo)之間的關(guān)系(如圖②)
在平面直角坐標(biāo)系中畫一個平行四邊形ABCD,設(shè)A(x1,y1),B(x2,y2),C(x3,y3),
D(x4,y4),則其對角線交點Q的坐標(biāo)可以表示為Q(            ,         ),也可以表示為Q(                       ),經(jīng)過比較,我們可以分別得出關(guān)于x1,x2,x3,x4及,y1,y2,y3,y4的兩個等式是                                      。 我們的結(jié)論是:平面直角坐標(biāo)系中平行四邊形的對角頂點的橫(縱)坐標(biāo)的              。

查看答案和解析>>

同步練習(xí)冊答案