精英家教網(wǎng)如圖,已知等邊三角形△AEC,以AC為對(duì)角線做正方形ABCD(點(diǎn)B在△AEC內(nèi),點(diǎn)D在△AEC外).連接EB,過(guò)E作EF⊥AB,交AB的延長(zhǎng)線為F.
(1)猜測(cè)直線BE和直線AC的位置關(guān)系,并證明你的猜想.
(2)證明:△BEF∽△ABC,并求出相似比.
分析:(1)由等邊三角形△AEC與正方形ABCD,利用SSS,易證:△AEB≌△CEB,再根據(jù)等腰三角形的三線合一性質(zhì),即可證得:BE⊥AC;
(2)根據(jù)題意易得∠EBF的度數(shù)為45°,則易證△BEF∽△ABC,又由相似三角形的對(duì)應(yīng)邊成比例,則可求得相似比.
解答:解:(1)猜測(cè)BE和直線AC垂直.
證明:∵△AEC是等邊三角形,
∴AE=CE,
∵四邊形ABCD是正方形,
∴AB=CB,
∵BE=BE,
∴△AEB≌△CEB(SSS).
∴∠AEB=∠CEB,
∵AE=CE,
∴BE⊥AC;

(2)∵△AEC是等邊三角形,精英家教網(wǎng)
∴∠EAC=∠AEC=60°,
∵BE⊥AC,
∴∠BEA=
1
2
∠AEC=30°,
∵四邊形ABCD是正方形,
∴∠BAC=45°,
∴∠BAE=15°,
∴∠EBF=45°,
∵EF⊥BF,
∴∠F=90°,
∴∠EBF=∠BAC,∠F=∠ABC,
∴△BEF∽△ACB,
延長(zhǎng)EB交AC于G,設(shè)AC為2a,則BG=a,EB=
3
a-a,
∴相似比是:
BE
AC
=
3
a-a
2a
=
(
3
-1)a
2a
=
3
-1
2
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、正方形的性質(zhì)以及等邊三角形的性質(zhì)等知識(shí).題目圖形較復(fù)雜,解題時(shí)要注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知等邊三角形ABC中,點(diǎn)D,E,F(xiàn)分別為邊AB,AC,BC的中點(diǎn),M為直線BC上一動(dòng)點(diǎn),△DMN為等邊三角形(點(diǎn)M的位置改變時(shí),△DMN也隨之整體移動(dòng)).
(1)如圖1,當(dāng)點(diǎn)M在點(diǎn)B左側(cè)時(shí),請(qǐng)你判斷EN與MF有怎樣的數(shù)量關(guān)系?點(diǎn)F是否在直線NE上?都請(qǐng)直接寫出結(jié)論,不必證明或說(shuō)明理由;
(2)如圖2,當(dāng)點(diǎn)M在BC上時(shí),其它條件不變,(1)的結(jié)論中EN與MF的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)利用圖2證明;若不成立,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)M在點(diǎn)C右側(cè)時(shí),請(qǐng)你在圖3中畫出相應(yīng)的圖形,并判斷(1)的結(jié)論中EN與MF的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)直接寫出結(jié)論,不必證明或說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,已知等邊三角形ABC,在AB上取點(diǎn)D,在AC上取點(diǎn)E,使得AD=AE,作等邊三角形PCD,QAE和RAB,求證:P、Q、R是等邊三角形的三個(gè)頂點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知等邊三角形△AEC,以AC為對(duì)角線做正方形ABCD(點(diǎn)B在△AEC內(nèi),點(diǎn)D在△AEC外).連接EB,過(guò)E作EF⊥AB,交AB的延長(zhǎng)線為F.請(qǐng)猜測(cè)直線BE和直線AC的位置關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知等邊三角形ABC的邊長(zhǎng)為10,點(diǎn)P、Q分別為邊AB、AC上的一個(gè)動(dòng)點(diǎn),點(diǎn)P從點(diǎn)B出發(fā)以1cm/s的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā)以2cm/s的速度向點(diǎn)A運(yùn)動(dòng),連接PQ,以Q為旋轉(zhuǎn)中心,將線段PQ按逆時(shí)針?lè)较蛐D(zhuǎn)60°得線段QD,若點(diǎn)P、Q同時(shí)出發(fā),則當(dāng)運(yùn)動(dòng)
10
3
10
3
s時(shí),點(diǎn)D恰好落在BC邊上.

查看答案和解析>>

同步練習(xí)冊(cè)答案