【題目】如圖,反比例函數(shù)y=與反比例函數(shù)y=k2+b的圖象的交點為A(m,1)、B(-2,n),OA與軸正方向的夾角為α,且tanα=。
(1)求反比例函數(shù)及一次函數(shù)的表達式;
(2)設直線AB與x軸交于點C,且AC與x軸正方向的夾角為β,求tanβ的值。
【答案】(1)直線AB的解析式為y=x-1;(2).
【解析】試題分析:(1)用待定系數(shù)法求函數(shù)表達式,需要知道圖像上點的坐標,根據,構造直角三角形OAE,把三角函數(shù)值轉化為邊的比,可求出A點橫坐標,把A坐標代入,求得反比例函數(shù)解析式,把B坐標代入求出n=-2,把A、B坐標代入y=k2x+b即可求出一次函數(shù)解析式;(2)易求C坐標(2,0),在Rt△ACE中,AE=1,CE=2,可求出tanβ的值.
試題解析:(1)過A作AE⊥x軸于E,∵tan∠AOE=tanα=,∴OE=4AE.又∵A(m,1),∴AE=1,AE=4,∴點A(4,1).∵A點在反比例函數(shù)圖像上,∴k1=4,∴反比例函數(shù)為.∵B(-2,n)在反比例函數(shù)圖像上,∴n="-2." ∴B的坐標是(-2,-2), 將A,B兩點的坐標代入直線y=k2x+b得:,解得k2=,b="-1," ∴直線AB的解析式為y=x-1;
(2)∵直線AB的表達式為y=x-1,令y=0,得x="2," ∴C(2,0), 又∵A(4,1),∴CE=2,AE=1.
∴tanβ==.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以點D為中線把正方形ABCD的邊DC順時針旋轉α度(0<α<360°)得DE,連接AE、BE.
(1)當α=30時,求證:△ABE是等腰三角形;
(2)除30外,當α等于多少時,△ABE是等腰三角形?請直接寫出α的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 準備一張矩形紙片,按如圖操作:將△ABE沿BE翻折,使點A落在對角線BD上的M點,將△CDF沿DF翻折,使點C落在對角線BD上的N點.
(1)、求證:四邊形BFDE是平行四邊形;
(2)、若四邊形BFDE是菱形, AB=2,求菱形BFDE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)圖象的頂點橫坐標是2,與軸交于A(,0)、B(,0),﹤0﹤,與軸交于點C,為坐標原點,.
(1)求證:;
(2)求、的值;
(3)當﹥0且二次函數(shù)圖象與直線僅有一個交點時,求二次函數(shù)的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商品原價為a元,由于供不應求,先提價20%進行銷售,后因供應逐步充足,價格又一次性降價20%,售價為b元,則a,b的大小關系為( )
A. b=a B. b=0.96a C. b=a﹣20% D. b=a+20%
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事件中不是隨機事件的是( )
A.打開電視機正好在播放廣告
B.從有黑球和白球的盒子里任意拿出一個正好是白球
C.從課本中任意拿一本書正好拿到數(shù)學書
D.明天太陽會從西方升起
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com