【題目】如圖,二次函數(shù)y=2mx2+5mx﹣12m(m為參數(shù),且m<0)的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(﹣4,0).
(1)求直線AC的解析式(用含m的式子表示).
(2)若m=﹣,連接BC,判斷∠CAB和∠CBA的數(shù)量關(guān)系,并說明理由.
(3)在(2)的條件下,設(shè)點(diǎn)M為AC上方的拋物線上一動點(diǎn)(與點(diǎn)A,C不重合),以M為圓心的圓與直線AC相切,求⊙M面積的取值范圍.
【答案】(1)y=﹣3mx﹣12m;(2)∠CBA=2∠CAB;(3)0<S⊙M≤.
【解析】
(1)由拋物線的解析式求出C點(diǎn)坐標(biāo),再用待定系數(shù)法求直線AC的解析式;
(2)作點(diǎn)B關(guān)于y軸的對稱點(diǎn)B',連接CB'.證明AB'=CB'便可得結(jié)論;
(3)過M點(diǎn)ME∥y軸,交AC于點(diǎn)E,設(shè)M點(diǎn)的橫坐標(biāo)為m,用m表示MD,再根據(jù)二次函數(shù)的性質(zhì)求得MD的最大值,最后根據(jù)圓的面積公式便可求得結(jié)果.
(1)令x=0,得y=2mx2+5mx﹣12m=﹣12m,
設(shè)直線AC的解析式為y=kx+b(k≠0),則,
∴,
∴直線AC的解析式為:y=﹣3mx﹣12m;
(2)∠CBA=2∠CAB.
理由如下:
如圖1,作點(diǎn)B關(guān)于y軸的對稱點(diǎn)B',連接CB'.
∴CB=CB',
∴∠CBA=∠CB'O,
∵m=﹣時(shí),拋物線的解析式為:,
∴C(0,2),
∴OC=2,
當(dāng)y=0,得=0,
解得x=﹣4或,
∴A(﹣4,0),B(,0),
∴B'(﹣,0),
∴AB'=,CB'=
∴AB'=CB',
∴∠CAB=∠ACB',
∵∠CB'O=∠CAB+∠ACB'=2∠CAB,
∴∠CBA=2∠CAB;
(3)如圖2,以MD為半徑做圓,過M點(diǎn)ME∥y軸,交AC于點(diǎn)E,
則∠MEC=∠ACO,
∵A(﹣4,0),以(0,2)
∴直線AC的解析式為y=,
設(shè)M(m,)(﹣4<m<0),則E(m,),
∴,
在Rt△AOC中,OC=2,OA=4,由勾股定理可得AC=2,
∴sin∠MED=,
∴,
由二次函數(shù)的性質(zhì)知,當(dāng)m=﹣2時(shí),DE有最大值為:,
∴,
∴⊙M面積的最大值為:π×()2=,
∴⊙M面積的取值范圍為:0<S⊙M≤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:梯形ABCD中,AD∥BC,∠ABC=90°,AD=9,BC=12,AB=6,在線段BC上任取一點(diǎn)P,連接DP,作射線PE⊥DP,PE與直線AB交于點(diǎn)E.
(1)試確定當(dāng)CP=3時(shí),點(diǎn)E的位置;
(2)若設(shè)CP=x,BE=y,試寫出y關(guān)于自變量x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,BC是弦,∠ABC=30°,過圓心O作OD⊥BC,垂足為E,交弧BC于點(diǎn)D,連接DC,則∠DCB的度數(shù)為( )
A. 30° B. 45° C. 50° D. 60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,已知△ABC中,AB=2,BC=4.畫出△ABC的高AD和CE并求出的值.
(2)在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為,點(diǎn)B坐標(biāo)為滿足.
①若沒有平方根,判斷點(diǎn)A在第幾象限并說明理由;
②若點(diǎn)A到軸的距離是點(diǎn)B到軸距離的3倍,求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=2,O是BC邊的中點(diǎn),點(diǎn)E是正方形內(nèi)一動點(diǎn),OE=2,連接DE,將線段DE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得DF,連接AE、CF.則線段OF長的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,CD為⊙O的弦,連接AC,BD,半徑CO交BD于點(diǎn)E,過點(diǎn)C作切線,交AB的延長線于點(diǎn)F,且∠CFA=∠DCA.
(1)求證:OE⊥BD;
(2)若BE=4,CE=2,則⊙O的半徑是 ,弦AC的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】使用家用燃?xì)庠顭_同一壺水所需的燃?xì)饬?/span>(單位:)與旋鈕的旋轉(zhuǎn)角度(單位:度)()近似滿足函數(shù)關(guān)系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃?xì)庠顭_同一壺水的旋鈕角度與燃?xì)饬?/span>的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出此燃?xì)庠顭_一壺水最節(jié)省燃?xì)獾男o角度約為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)正六棱柱的表面展開后恰好放入一個(gè)矩形內(nèi),把其中一部分圖形挪動了位置,發(fā)現(xiàn)矩形的長留出,寬留出則該六棱柱的側(cè)面積是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,,E為邊BC上一點(diǎn),且EC=AD,連接AC.
(1)求證:四邊形AECD是矩形;
(2)若AC平分∠DAB,AB=5,EC=2,求AE的長,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com