【題目】為迎接河南省第30屆青少年科技創(chuàng)新大賽,某中學(xué)向七年級(jí)學(xué)生征集科幻畫(huà)作品,李老師從七年級(jí)12個(gè)班中隨機(jī)抽取了A、B、C、D四個(gè)班,對(duì)征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖(如圖)

(1)李老師所調(diào)查的4個(gè)班征集到作品共件,其中B班征集到作品 , 請(qǐng)把圖補(bǔ)充完整;
(2)李老師所調(diào)查的四個(gè)班平均每個(gè)班征集到作品多少件?請(qǐng)估計(jì)全年級(jí)共征集到作品多少件?
(3)如果全年級(jí)參展作品中有5件獲得一等獎(jiǎng),其中有3名作者是男生,2名作者是女生.現(xiàn)在要抽兩人去參加學(xué)?偨Y(jié)表彰座談會(huì),用樹(shù)狀圖或列表法求出恰好抽中一男一女的概率.

【答案】
(1)12;3;
(2)

解:王老師所調(diào)查的四個(gè)班平均每個(gè)班征集作品是:12÷4=3(件),

全校共征集到的作品:3×14=42(件)


(3)

解:畫(huà)樹(shù)狀圖得:

∵共有20種等可能的結(jié)果,恰好抽中一男一女的有12種情況,

∴恰好抽中一男一女的概率為: =


【解析】解:(1)根據(jù)題意得:
調(diào)查的4個(gè)班征集到作品數(shù)為:5÷ =12(件),
B班作品的件數(shù)為:12﹣2﹣5﹣2=3(件),
補(bǔ)圖如下:

所以答案是:12;3;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解扇形統(tǒng)計(jì)圖的相關(guān)知識(shí),掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況,以及對(duì)條形統(tǒng)計(jì)圖的理解,了解能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|. (Ⅰ)解不等式:f(x)+f(x﹣1)≤2,;
(Ⅱ)若a>0,求證:f(ax)﹣af(x)≤f(a).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直角坐標(biāo)系中有一矩形OABC , 其中 O是坐標(biāo)原點(diǎn),點(diǎn)A , C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(3,4),直線 AB于點(diǎn)D , 點(diǎn)P是直線 位于第一象限上的一點(diǎn),連接PA , 以PA為半徑作⊙P

(1)連接AC , 當(dāng)點(diǎn)P落在AC上時(shí), 求PA的長(zhǎng);
(2)當(dāng)⊙P經(jīng)過(guò)點(diǎn)O時(shí),求證:△PAD是等腰三角形;
(3)設(shè)點(diǎn)P的橫坐標(biāo)為m ,
在點(diǎn)P移動(dòng)的過(guò)程中,當(dāng)⊙P與矩形OABC某一邊的交點(diǎn)恰為該邊的中點(diǎn)時(shí),求所有滿足要求的m值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校學(xué)生會(huì)發(fā)現(xiàn)同學(xué)們就餐時(shí)剩余飯菜較多,浪費(fèi)嚴(yán)重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)“光盤(pán)行動(dòng)”,讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動(dòng)的重要性,校學(xué)生會(huì)在某天午餐后,隨機(jī)調(diào)查了部分同學(xué)這餐飯菜的剩余情況,并將結(jié)果統(tǒng)計(jì)后繪制成了如圖所示的不完整的統(tǒng)計(jì)圖.
(1)這次被調(diào)查的同學(xué)共有名;
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)校學(xué)生會(huì)通過(guò)數(shù)據(jù)分析,估計(jì)這次被調(diào)查的所有學(xué)生一餐浪費(fèi)的食物可以供200人用一餐.據(jù)此估算,該校18 000名學(xué)生一餐浪費(fèi)的食物可供多少人食用一餐?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的半徑為1,正方形ABCD的對(duì)角線長(zhǎng)為6,OA=4.若將⊙O繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)360°,在旋轉(zhuǎn)過(guò)程中,⊙O與正方形ABCD的邊只有一個(gè)公共點(diǎn)的情況一共出現(xiàn)(
A.3次
B.4次
C.5次
D.6次

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋裝有三個(gè)完全相同的小球,分別標(biāo)號(hào)為1、2、3.求下列事件的概率:
(1)從中任取一球,小球上的數(shù)字為偶數(shù)
(2)從中任取一球,記下數(shù)字作為點(diǎn)A的橫坐標(biāo)x,把小球放回袋中,再?gòu)闹腥稳∫磺蛴浵聰?shù)字作為點(diǎn)A的縱坐標(biāo)y,點(diǎn)A(x,y)在函數(shù)y=的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)數(shù)tan45°,,0,﹣π,,﹣,sin60°,0.3131131113…(相鄰兩個(gè)3之間依次多一個(gè)1),其中無(wú)理數(shù)的個(gè)數(shù)是( 。
A.4
B.2
C.1
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣2x+4與坐標(biāo)軸分別交于C、B兩點(diǎn),過(guò)點(diǎn)C作CD⊥x軸,點(diǎn)P是x軸下方直線CD上的一點(diǎn),且△OCP與△OBC相似,求過(guò)點(diǎn)P的雙曲線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,二次函數(shù)y= x2﹣2x+1的圖象與一次函數(shù)y=kx+b(k≠0)的圖象交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B在第一象限內(nèi),點(diǎn)C是二次函數(shù)圖象的頂點(diǎn),點(diǎn)M是一次函數(shù)y=kx+b(k≠0)的圖象與x軸的交點(diǎn),過(guò)點(diǎn)B作軸的垂線,垂足為N,且SAMO:S四邊形AONB=1:48.

(1)求直線AB和直線BC的解析式;
(2)點(diǎn)P是線段AB上一點(diǎn),點(diǎn)D是線段BC上一點(diǎn),PD∥x軸,射線PD與拋物線交于點(diǎn)G,過(guò)點(diǎn)P作PE⊥x軸于點(diǎn)E,PF⊥BC于點(diǎn)F.當(dāng)PF與PE的乘積最大時(shí),在線段AB上找一點(diǎn)H(不與點(diǎn)A,點(diǎn)B重合),使GH+ BH的值最小,求點(diǎn)H的坐標(biāo)和GH+ BH的最小值;
(3)如圖2,直線AB上有一點(diǎn)K(3,4),將二次函數(shù)y= x2﹣2x+1沿直線BC平移,平移的距離是t(t≥0),平移后拋物線上點(diǎn)A,點(diǎn)C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A′,點(diǎn)C′;當(dāng)△A′C′K′是直角三角形時(shí),求t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案