如圖,△ABC中,∠CAB與∠CBA均為銳角,分別以CA、CB為邊向△ABC外精英家教網(wǎng)側(cè)作正方形CADE和正方形CBFG,再作DD1⊥直線AB于D1,F(xiàn)F1⊥直線AB于F1
求證:(Ⅰ)DD1+FF1=AB;
(Ⅱ)線段AB的中點(diǎn)N也平分線段D1F1
分析:(1)過(guò)點(diǎn)C作CH⊥AB,垂足為H;再通過(guò)兩對(duì)全等三角形來(lái)證明DD1+EE1=AB即可;
(3)利用“梯形的中位線長(zhǎng)等于兩底和的一半”,設(shè)M為DE的中點(diǎn),Q為D1E1的中點(diǎn),MQ=
1
2
AB且MQ⊥AB,特殊地,當(dāng)四邊形DD1E1E為矩形時(shí),以上結(jié)論仍然成立.又因?yàn)榭勺C明D1A=E1B,所以AB的中點(diǎn)N就是D1E1的中點(diǎn).
解答:精英家教網(wǎng)證明:(1)過(guò)點(diǎn)C作CK⊥AB于K,
∵DD1⊥AB、EE1⊥AB,
∴∠DD1A=∠EE1B=∠AKC=∠BKC=90°,
∴∠DAD1+∠CAB=∠CAE+∠ACK=∠CBK+∠BCK=∠CBK+∠EBE1=90°,
∴∠DAD1=∠ACK,∠EBE1=∠BCK,
∵AD=AC,BC=BE,
∴△ADD1≌△CAK,△EBE1≌△BCK,
∴DD1=AK,EE1=BK,
∴DD1+EE1=AB;

(2)設(shè)M為DF的中點(diǎn),Q為D1F1的中點(diǎn),
則:MQ=
1
2
(DD1+EE1)=
1
2
AB
且MQ⊥AB,
當(dāng)四邊形DD1E1E為矩形時(shí),以上結(jié)論仍然成立.
∴△ADD1≌△CAK,△EBE1≌△BCK,
又∵D1A=CK=E1B,
∴AB的中點(diǎn)N就是D1E1的中點(diǎn).
點(diǎn)評(píng):此題考查了全等三角形的判定與性質(zhì),正方形的性質(zhì),以及梯形中位線的性質(zhì)等知識(shí).此題綜合性很強(qiáng),注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫(huà)∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案