(2005•寧夏)在下面網(wǎng)格中,每個小正方形的邊長均為1,請你畫出以格點為頂點,面積為10個平方單位的等腰三角形,在給出的網(wǎng)格中畫出兩個符合條件且不全等的三角形.
(所畫的兩個三角形若全等視為1個)

【答案】分析:面積要為10,根據(jù)三角形的面積公式可得底乘高為20,所以可讓底為20高為1,或底為10高為2,等等此題答案不唯一,但頂點必須在底邊的垂直平分線上.
解答:解:符合題意的三角形每畫出1個得(4分)
例如:
底 20 10  2 4 4   
高  1 2 10 5     
 編號 (1) (2) (3) (4) (5) (6) (7) (8) (9)

點評:本題主要考查了等腰三角形的性質(zhì),面積的求法及利用網(wǎng)格畫圖的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2005•寧夏)在Rt△ABC中,∠C=90°,AC=3,BC=4,點E在直角邊AC上(點E與A、C兩點均不重合),點F在斜邊AB上(點F與A、B兩點均不重合).
(1)若EF平分Rt△ABC的周長,設(shè)AE長為x,試用含x的代數(shù)式表示△AEF的面積;
(2)是否存在線段EF將Rt△ABC的周長和面積同時平分?若存在,求出此時AE的長;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2005•寧夏)在Rt△ABC中,∠C=90°,AC=3,BC=4,點E在直角邊AC上(點E與A、C兩點均不重合),點F在斜邊AB上(點F與A、B兩點均不重合).
(1)若EF平分Rt△ABC的周長,設(shè)AE長為x,試用含x的代數(shù)式表示△AEF的面積;
(2)是否存在線段EF將Rt△ABC的周長和面積同時平分?若存在,求出此時AE的長;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年寧夏中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•寧夏)在Rt△ABC中,∠C=90°,AC=3,BC=4,點E在直角邊AC上(點E與A、C兩點均不重合),點F在斜邊AB上(點F與A、B兩點均不重合).
(1)若EF平分Rt△ABC的周長,設(shè)AE長為x,試用含x的代數(shù)式表示△AEF的面積;
(2)是否存在線段EF將Rt△ABC的周長和面積同時平分?若存在,求出此時AE的長;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年寧夏中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•寧夏)在Rt△ABC中,∠C=90°,AC=3,BC=4,點E在直角邊AC上(點E與A、C兩點均不重合),點F在斜邊AB上(點F與A、B兩點均不重合).
(1)若EF平分Rt△ABC的周長,設(shè)AE長為x,試用含x的代數(shù)式表示△AEF的面積;
(2)是否存在線段EF將Rt△ABC的周長和面積同時平分?若存在,求出此時AE的長;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年寧夏中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•寧夏)在下面網(wǎng)格中,每個小正方形的邊長均為1,請你畫出以格點為頂點,面積為10個平方單位的等腰三角形,在給出的網(wǎng)格中畫出兩個符合條件且不全等的三角形.
(所畫的兩個三角形若全等視為1個)

查看答案和解析>>

同步練習(xí)冊答案