【題目】如圖,D是△ABC的邊AB上一點,CE∥AB,DE交AC于點F,若FA=FC.
(1)求證:四邊形ADCE是平行四邊形;
(2)若AE⊥EC,EF=EC=1,求四邊形ADCE的面積.
【答案】(1)見解析 (2)
【解析】(1)首先利用ASA得出△DAF≌△ECF,進(jìn)而利用全等三角形的性質(zhì)得出CE=AD,即可得出四邊形ACDE是平行四邊形;
(2)由AE⊥EC,四邊形ADCE是平行四邊形,可推出四邊形ADCE是矩形,由F為AC的中點,求出AC,根據(jù)勾股定理即可求得AE,由矩形面積公式即可求得結(jié)論.
(1) ∵CE∥AB,
∴∠EDA=∠DEC.
∵FA=FC ∠DFA=∠CFE,
∴△ADF≌△CEF(ASA) ,
∴AF=CF,
∴四邊形ADCE是平行四邊形;
(2)∵AE⊥EC,
綜合(1)四邊形ADCE是平行四邊形,
∴四邊形ADCE是矩形,
∴DE=2EF=2 ∠DCE= ,
∴DC= ,
四邊形ADCE的面積=CE·DC=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣4x﹣m2=0
(1)求證:該方程有兩個不等的實根;
(2)若該方程的兩個實數(shù)根x1、x2滿足x1+2x2=9,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi),如圖,在ABCD中,AB=10,AD=15,tanA= ,點P為AD邊上任意點,連接PB,將PB繞點P逆時針旋轉(zhuǎn)90°得到線段PQ.
(1)當(dāng)∠DPQ=10°時,求∠APB的大;
(2)當(dāng)tan∠ABP:tanA=3:2時,求點Q與點B間的距離(結(jié)果保留根號);
(3)若點Q恰好落在ABCD的邊所在的直線上,直接寫出PB旋轉(zhuǎn)到PQ所掃過的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD中,E為BC上一點,過B作BG⊥AE于G,延長BG至點F使∠CFB=45°
(1)求證:AG=FG;
(2)如圖2延長FC、AE交于點M,連接DF、BM,若C為FM中點,BM=10,求FD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、M、B、N、C在同一直線上順次排列,點M是線段AB的中點,點N是線段MC的中點,點N在點B的右邊.
(1)填空:圖中共有線段 條;
(2)若AB=6,MC=7,求線段BN的長;
(3)若AB=a,MC=7,將線段BN的長用含a的代數(shù)式表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上,點A表示1,現(xiàn)將點A沿x軸做如下移動,第一次點A向左移動2個單位長度到達(dá)點 A1,第二次將點A1,向右移動4個單位長度到達(dá)點A2,第三次將點A2向左移動6個單位長度到達(dá)點A3,按照這種移動規(guī)律移動下去,第n次移動到點An,如果點An與原點的距離等于19,那么n的值是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點G,點F是CD上一點,且滿足 ,連接AF并延長交⊙O于點E,連接AD、DE,若CF=3,AF=4.
(1)求證:△ADF∽△AED;
(2)求FG的長;
(3)求tan∠E的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com