如圖,點C′與半圓上的點C關(guān)于直徑AB成軸對稱.若∠AOC=40°,則∠CC′B
 ▲ °.
70
連接BC,即有∠AOC=2∠ABC,可得出∠ABC的度數(shù),又AB⊥CC′,所以有∠C′CB=90°-∠ABC.根據(jù)軸對稱的性質(zhì)即可得出∠CC′B=∠C′CB.

解:連接BC,
所以∠ABC=∠AOC=20°;
又AB⊥CC′,
所以有∠C′CB=90°-∠ABC=70°;
即∠CC′B=70°.
故答案為:70°.
本題主要考查了垂徑定理的應(yīng)用和軸對稱的有關(guān)知識,題目不難,屬于基礎(chǔ)性題目.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(6分)如圖,線段經(jīng)過圓心,交⊙O于點,點在⊙O上,連接,是⊙O的切線嗎?請說明理由.
 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,四邊形內(nèi)接于的直徑,

于點, ,則的正切值是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知⊙O的直徑AB=8cm,C為⊙O上的一點,∠BAC=30°,則BC=_________cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(8分)小平所在的學習小組發(fā)現(xiàn),車輛轉(zhuǎn)彎時,能否順利通過直角彎道的標圖2是某巷子的俯視圖,巷子路面寬4 m,轉(zhuǎn)彎處為直角,車輛的車身為矩形ABCD,CD與DE、CE的夾角都是45°時,連接EF,交CD于點G,若GF的長度至少能達到車身寬度,即車輛能通過.
(1)小平認為長8m,寬3m的消防車不能通過該直角轉(zhuǎn)彎,請你幫他說明理由;
為半徑的弧),長8m,寬3m的消防車就可以通過該彎道了,具體的方案如圖3,其中OM⊥OM′,你能幫小平算出,ON至少為多少時,這種消防車可以通過該巷子,?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AB是⊙O直徑,且AB=4cm,弦CD⊥AB,∠COB=45°,則CD為   ▲  cm.   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知的邊相切于點,的半徑為,當相切時,的半徑是


                        
                     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)
如圖,O是△ABC的外接圓,AB = AC,過點A作AP∥BC,交BO的延長線于P.
(1)求證:AP是O的切線;
(2)若O的半徑R = 6,△ACD為等邊三角形時,求線段AP的長.     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,PA為⊙O的切線,A為切點,PO交⊙O于點B,PA=4,OA=3,則cos∠APO
的值為(     )
A.B.C.D.

查看答案和解析>>

同步練習冊答案