【題目】如圖,已知PA=PB=PC=2,∠BPC=120°PA∥BC.以AB、PB為邊作平行四邊形ABPD,連接CD,則CD的長(zhǎng)為( 。

A. B.C.D.

【答案】A

【解析】

連接BDAPO,作PE⊥BCE,連接OE,由等腰三角形的性質(zhì)得出∠PBE=30°,BE=CE,由直角三角形的性質(zhì)得出PE=PB=1,由平行四邊形的性質(zhì)得出OP=OA=1OB=OD,得出OE△BCD的中位線,得出CD=2OE,由勾股定理得:OE==,即可得出結(jié)果.

解:連接BDAPO,作PE⊥BCE,連接OE,如圖所示:

∵PB=PC=2∠BPC=120°,PE⊥BC,

∴∠PBE=30°,BE=CE,

∴PE=PB=1,

四邊形ABPD是平行四邊形,

∴OP=OA=1,OB=OD,

∴OE△BCD的中位線,

∴CD=2OE,

∵PA//BC,

∴PA⊥PE

∴∠APE=90°,

由勾股定理得:OE==

∴CD=2OE=2;

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線AC、BD交于點(diǎn)O,且DEAC,CEBD.

(1)求證:四邊形OCED是菱形;

(2)若∠BAC=30°,AC=4,求菱形OCED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點(diǎn),且A,B兩點(diǎn)的橫坐標(biāo)分別是24,則△OAB的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,的平分線交于點(diǎn),過(guò),,.若的周長(zhǎng)比的周長(zhǎng)大,的距離為,則的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)EF、H分別是ABBC、CD的中點(diǎn),CE、DF交于G,連接AG、HG.下列結(jié)論:①CEDF;②AGAD;③∠CHG=∠DAG;④HGAD.其中正確的有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B在雙曲線y=(x>0)上,點(diǎn)C在雙曲線y=(x>0)上,若ACy軸,BCx軸,且AC=BC,則AB等于( 。

A. B. 2 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A、D、C、F在同一條直線上,ABDE,∠A=∠EDF,再添加一個(gè)條件,可使△ABC DEF,下列條件不符合的是

A.B=∠EB.BCEFC.ADCFD.ADDC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有RtABC,A=90°,AB=AC,A(﹣2,0),B(0,1).

(1)求點(diǎn)C的坐標(biāo);

(2)將ABC沿x軸的正方向平移,在第一象限內(nèi)B、C兩點(diǎn)的對(duì)應(yīng)點(diǎn)B'、C'正好落在某反比例函數(shù)圖象上.請(qǐng)求出這個(gè)反比例函數(shù)和此時(shí)的直線B'C'的解析式.

(3)若把上一問(wèn)中的反比例函數(shù)記為y1,點(diǎn)B′,C′所在的直線記為y2,請(qǐng)直接寫(xiě)出在第一象限內(nèi)當(dāng)y1<y2時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,BA=BC=20cm,AC=30cm,點(diǎn)PA點(diǎn)出發(fā),沿著AB以每秒4cm的速度向B點(diǎn)運(yùn)動(dòng);同時(shí)點(diǎn)QC點(diǎn)出發(fā),沿CA以每秒3cm的速度向A點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒.

(1)當(dāng)CQ=10時(shí),求的值.

(2)當(dāng)x為何值時(shí),PQBC;

(3)是否存在某一時(shí)刻,使APQ∽△CQB?若存在,求出此時(shí)AP的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案