【題目】如圖,已知PA=PB=PC=2,∠BPC=120°,PA∥BC.以AB、PB為邊作平行四邊形ABPD,連接CD,則CD的長(zhǎng)為( 。
A. B.C.D.
【答案】A
【解析】
連接BD交AP于O,作PE⊥BC于E,連接OE,由等腰三角形的性質(zhì)得出∠PBE=30°,BE=CE,由直角三角形的性質(zhì)得出PE=PB=1,由平行四邊形的性質(zhì)得出OP=OA=1,OB=OD,得出OE是△BCD的中位線,得出CD=2OE,由勾股定理得:OE==,即可得出結(jié)果.
解:連接BD交AP于O,作PE⊥BC于E,連接OE,如圖所示:
∵PB=PC=2,∠BPC=120°,PE⊥BC,
∴∠PBE=30°,BE=CE,
∴PE=PB=1,
∵四邊形ABPD是平行四邊形,
∴OP=OA=1,OB=OD,
∴OE是△BCD的中位線,
∴CD=2OE,
∵PA//BC,
∴PA⊥PE,
∴∠APE=90°,
由勾股定理得:OE==,
∴CD=2OE=2;
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線AC、BD交于點(diǎn)O,且DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若∠BAC=30°,AC=4,求菱形OCED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點(diǎn),且A,B兩點(diǎn)的橫坐標(biāo)分別是2和4,則△OAB的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,與的平分線交于點(diǎn),過(guò)作交,于,.若的周長(zhǎng)比的周長(zhǎng)大,到的距離為,則的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E、F、H分別是AB、BC、CD的中點(diǎn),CE、DF交于G,連接AG、HG.下列結(jié)論:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=AD.其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B在雙曲線y=(x>0)上,點(diǎn)C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于( 。
A. B. 2 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A、D、C、F在同一條直線上,AB=DE,∠A=∠EDF,再添加一個(gè)條件,可使△ABC ≌ △DEF,下列條件不符合的是
A.∠B=∠EB.BC∥EFC.AD=CFD.AD=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).
(1)求點(diǎn)C的坐標(biāo);
(2)將△ABC沿x軸的正方向平移,在第一象限內(nèi)B、C兩點(diǎn)的對(duì)應(yīng)點(diǎn)B'、C'正好落在某反比例函數(shù)圖象上.請(qǐng)求出這個(gè)反比例函數(shù)和此時(shí)的直線B'C'的解析式.
(3)若把上一問(wèn)中的反比例函數(shù)記為y1,點(diǎn)B′,C′所在的直線記為y2,請(qǐng)直接寫(xiě)出在第一象限內(nèi)當(dāng)y1<y2時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BA=BC=20cm,AC=30cm,點(diǎn)P從A點(diǎn)出發(fā),沿著AB以每秒4cm的速度向B點(diǎn)運(yùn)動(dòng);同時(shí)點(diǎn)Q從C點(diǎn)出發(fā),沿CA以每秒3cm的速度向A點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒.
(1)當(dāng)CQ=10時(shí),求的值.
(2)當(dāng)x為何值時(shí),PQ∥BC;
(3)是否存在某一時(shí)刻,使△APQ∽△CQB?若存在,求出此時(shí)AP的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com