【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),交y軸于C點(diǎn),其中B點(diǎn)坐標(biāo)為(3,0),C點(diǎn)坐標(biāo)為(0,3),且圖象對稱軸為直線x=1.
(1)求此二次函數(shù)的關(guān)系式;
(2)P為二次函數(shù)y=ax2+bx+c圖象上一點(diǎn),且S△ABP=S△ABC,求P點(diǎn)的坐標(biāo).
【答案】(1)二次函數(shù)的表達(dá)式為y=﹣x2+2x+3;(2)P點(diǎn)的坐標(biāo)為(2,3)或(1﹣,﹣3)或(1+,﹣3).
【解析】試題分析:(1)將B、C的坐標(biāo)和對稱軸方程代入拋物線的解析式中,即可求得待定系數(shù)的值,可得此二次函數(shù)的關(guān)系式;
(2)根據(jù)等底等高的三角形的面積相等,可得P的縱坐標(biāo)與C的縱坐標(biāo)相等或互為相反數(shù),根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案.
試題解析:解:(1)根據(jù)題意,得: ,解得: .
故二次函數(shù)的表達(dá)式為y=﹣x2+2x+3.
(2)由S△ABP=S△ABC,得yP=3或﹣3,當(dāng)y=3時(shí),x=2;當(dāng)y=﹣3時(shí),﹣x2+2x+3=﹣3,
解得x1=,x2=.
故P點(diǎn)的坐標(biāo)為(2,3)或(,﹣3)或(,﹣3).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次促銷活動中,某商場為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖,轉(zhuǎn)盤被平均分成16份),并規(guī)定:顧客每購買100元的商品,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機(jī)會.如果轉(zhuǎn)盤停止后,指針正好對準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得50元、30元、20元的購物券,憑購物券可以在該商場繼續(xù)購物.某顧客購買了125元的商品.
(1)求該顧客轉(zhuǎn)動轉(zhuǎn)盤獲得購物券的概率;
(2)求該顧客分別獲得50元、20元的購物券的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC的平分線與BC的中垂線DE交于點(diǎn)E,過點(diǎn)E作AC邊的垂線,垂足為N,過點(diǎn)E作AB延長線的垂線,垂足為M.
(1)求證:BM=CN;
(2)若,AB=2,AC=8,求BM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線y=2x+3與直線y=﹣2x﹣1.
(1)求兩直線與y軸交點(diǎn)A,B的坐標(biāo);
(2)求兩直線交點(diǎn)C的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是BC上一點(diǎn),∠DAC=∠B,E為AB上一點(diǎn).
(1)求證:△CAD∽△CBA;
(2)若BD=10,DC=8,求AC的長;
(3)在(2)的條件下,若DE∥AC,AE=4,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD⊥AB,BE⊥AC,垂足分別為D,E,BE,CD相交于點(diǎn)O,OB=OC,連接AO,則圖中一共有( 。⿲θ热切危
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長是1),△ABC的頂點(diǎn)均在格點(diǎn)上,請?jiān)谒o的直角坐標(biāo)系中解答下列問題:
(1)作出△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°的△A1B1C1;作出△ABC關(guān)于原點(diǎn)O成中心對稱的△A2B2C2;
(2)點(diǎn)B1的坐標(biāo)為__________,點(diǎn)C2的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AC=5,AB=12,∠BAC的平分線與BC的垂直平分線DG交于點(diǎn)D,DE⊥AC的延長線于點(diǎn)E,DF⊥AB于點(diǎn)F.
(1)求證:CE=BF;
(2)求DG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com