閱讀下列材料:

∵(x+3)(x-2)=x2+x-6,∴(x2+x-6)÷(x-2)=x+3;這說(shuō)明x2+x-6能被x-2整除,同時(shí)也說(shuō)明多項(xiàng)式x2+x-6有一個(gè)因式為x-2;另外,當(dāng)x=2時(shí),多項(xiàng)式x2+x-6的值為0.

(1)

根據(jù)上面的材料猜想:多項(xiàng)式的值為0、多項(xiàng)式有因式x-2、多項(xiàng)式能被x-2整除,這之間存在著一種什么樣的聯(lián)系?

(2)

探求規(guī)律:更一般地,如果一個(gè)關(guān)于字母x的多項(xiàng)式M,當(dāng)x=k時(shí),M的值為0,那么M與代數(shù)式x-k之間有何種關(guān)系?

(3)

應(yīng)用:利用上面的結(jié)果求解,已知x-2能整除x2+kx-14,求k.

答案:
解析:

(1)

解:由x2+x-6與x-2的關(guān)系我們可以看出:當(dāng)x=2時(shí),如果多項(xiàng)式的值為0,那么多項(xiàng)式就能被x-2整除,多項(xiàng)式就有x-2這個(gè)因式.

(2)

解:如果多項(xiàng)式M:①能被x-k整除;②當(dāng)x=k時(shí),多項(xiàng)式M的值為0;③有因式x-k,滿足三個(gè)條件中的一個(gè),那么它必定具備另外的兩個(gè).

(3)

  解:如果多項(xiàng)式M:①能被x-k整除;②當(dāng)x=k時(shí),多項(xiàng)式M的值為0;③有因式x-k,滿足三個(gè)條件中的一個(gè),那么它必定具備另外的兩個(gè).(3)∵x-2能整除x2+kx-14,∴當(dāng)x=2時(shí),x2+kx-14的值為0,即22+2k-14=0,解得k=5.

  說(shuō)明:通過(guò)對(duì)材料的分析、歸納,我們得出:這是多項(xiàng)式的一個(gè)重要結(jié)論,記住并運(yùn)用它解題,會(huì)使解題過(guò)程變得簡(jiǎn)便.


提示:

  提示:(1)由閱讀材料不難發(fā)現(xiàn)它們之間的聯(lián)系,即多項(xiàng)式有因式x-2與x=2時(shí)多項(xiàng)式的值為0是一致的;

  (2)根據(jù)(1)題,可以得出更一般的結(jié)論;

  (3)由多項(xiàng)式x2+kx-14能被x-2整除,那么當(dāng)x=2時(shí),多項(xiàng)式的值為0,解關(guān)于k的方程即可求出k的值.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

請(qǐng)閱讀下列材料,規(guī)定一種運(yùn)算:
.
ab
cd
.
=ab-bc,例如:
.
23
45
.
=2×5-3×4=-2,按照這種運(yùn)算的規(guī)定,當(dāng)x=
 
時(shí),
.
x
1
2
-x
21
.
=
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料并解決有關(guān)問題:
我們知道,現(xiàn)在我們可以用這一結(jié)論來(lái)化簡(jiǎn)含有絕對(duì)值的代數(shù)式,如化簡(jiǎn)代數(shù)式|x+1|+|x-2|時(shí),可令x+1=0和x-2=O,分別求得x=-1,x=2(稱-1,2分別為|x+1|與|x-2|的零點(diǎn)值).在實(shí)數(shù)范圍內(nèi),零點(diǎn)值x=-1和,x=2可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下3種情況:
(1)x<-1;(2)-1≤x<2;(3)x≥2.從而化簡(jiǎn)代數(shù)式|x+1|+|x-2|可分以下3種情況:
(1)當(dāng)x<-1時(shí),原式=-(x+1)-(x-2)=-2x+1;
(2)當(dāng)-1≤x<2時(shí),原式=x+1-(x-2)=3;
(3)當(dāng)x≥2時(shí),原式=x+1+x-2=2x-1.
綜上討論,原式=
-2x+1(x<-1)
3(-1≤x<2)
2x-1(x≥2)

通過(guò)以上閱讀,請(qǐng)你解決以下問題:
(1)分別求出|x+2|和|x-4|的零點(diǎn)值;
(2)化簡(jiǎn)代數(shù)式|x+2|+|x-4|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

26、閱讀下列材料并完成填空:
你能比較兩個(gè)數(shù)20042005和20052004的大小嗎?為了解決這個(gè)問題,先把問題一般化,即比較nn+1和(n+1)n的大。╪≥1,n是整數(shù)),然后從分析n=1,n=2,n=3,…,這些簡(jiǎn)單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過(guò)歸納,猜想出結(jié)論.
(1)通過(guò)計(jì)算,比較下列①-⑥各組的兩個(gè)數(shù)的大。ㄔ跈M線上填“>”、“=”、“<”)
①12
21②23
32③34
43
④45
54⑤56
65⑥67
76…;
(2)從上面各小題的結(jié)果經(jīng)過(guò)歸納,可以猜出nn+1和(n+1)n的大小關(guān)系;
(3)根據(jù)上面歸納猜想的一般結(jié)論,可以得到20042005
20052004(在橫線上填“>”、“=”、“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀理解題:閱讀下列材料,關(guān)于x的方程:x+
1
x
=c+
1
c
的解是x1=c,x2=
1
c

x-
1
x
=c-
1
c
(即x+
-1
x
=c+
-1
c
)的解是x1=c,x2=-
1
c
;x+
2
x
=c+
2
c
的解是:x1=c,x2=
2
c
,…
(1)觀察上述方程及其解的特征,直接寫出關(guān)于x的方程x+
m
x
=c+
m
c
(m≠0)的解,并利用“方程的解”的概念進(jìn)行驗(yàn)證;
(2)通過(guò)(1)的驗(yàn)證所獲得的結(jié)論,你能解出關(guān)于x的方程:x+
2
x-1
=a+
2
a-1
的解嗎?若能,請(qǐng)求出此方程的解;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

請(qǐng)閱讀下列材料:
我們規(guī)定一種運(yùn)算:
.
ac
bd
.
=ad-bc,例如:
.
23
45
.
=2×5-3×4=10-12=-2.按照這種運(yùn)算的規(guī)定,請(qǐng)解答下列問題:(1)直接寫出
.
-12
-20.5
.
的計(jì)算結(jié)果;
(2)當(dāng)x取何值時(shí),
.
x0.5-x
12x
.
=0;
(3)若
.
0.5x-1y
83
.
=
.
x-y
0.5-1
.
=-7,直接寫出x和y的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案