【題目】如圖,已知AB為⊙O的直徑,AC為⊙O的切線,OC交⊙O于點(diǎn)D,BD的延長(zhǎng)線交AC于點(diǎn)E.
(1)求證:∠1=∠CAD;
(2)若AE=EC=2,求⊙O的半徑.
【答案】(1)證明過(guò)程見(jiàn)解析;(2)
【解析】試題分析:(1)由AB為⊙O的直徑,AC為⊙O的切線,易證得∠CAD=∠BDO,繼而證得結(jié)論;
(2)由(1)易證得△CAD∽△CDE,然后由相似三角形的對(duì)應(yīng)邊成比例,求得CD的長(zhǎng),再利用勾股定理,求得答案.
試題解析:(1)∵AB為⊙O的直徑,
∴∠ADB=90°,
∴∠ADO+∠BDO=90°,
∵AC為⊙O的切線,
∴OA⊥AC,
∴∠OAD+∠CAD=90°,
∵OA=OD,
∴∠OAD=∠ODA,
∵∠1=∠BDO,
∴∠1=∠CAD;
(2)∵∠1=∠CAD,∠C=∠C,
∴△CAD∽△CDE,
∴CD:CA=CE:CD,
∴CD2=CACE,
∵AE=EC=2,
∴AC=AE+EC=4,
∴CD=2,
設(shè)⊙O的半徑為x,則OA=OD=x,
則Rt△AOC中,OA2+AC2=OC2,
∴x2+42=(2+x)2,
解得:x=.
∴⊙O的半徑為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一元二次方程ax2+bx+1=0有兩個(gè)相同的實(shí)數(shù)根,則a2﹣b2+5的最小值為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( )
A. a2+a3=a5B. a6÷a2=a3 C. (a2)3=a6D. 2a×3a=6a
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)A,B,C三點(diǎn)能確定一個(gè)圓的條件是( )
①AB=2,BC=3,AC=5;②AB=3, BC=3,AC=2;③AB=3,BC=4,AC= 5.
A. ①② B. ①②③ C. ②③ D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平行四邊形ABCD中,CE平分∠BCD且交AD于點(diǎn)E,A F∥CE,且交BC于點(diǎn)F.
(1)求證:△ABF≌△CDE;
(2)如圖,若∠1=65°,求∠B的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=﹣x+3與坐標(biāo)軸分別交于點(diǎn)A,B,點(diǎn)P在拋物線y=﹣(x﹣)2+4上,能使△ABP為等腰三角形的點(diǎn)P的個(gè)數(shù)有( )
A.3個(gè) B.4個(gè) C.5個(gè) D.6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,點(diǎn)O是AB中點(diǎn),連接OH,則OH= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD為直徑作圓O,過(guò)點(diǎn)D作DE∥AB交圓O于點(diǎn)E
(1)證明點(diǎn)C在圓O上;
(2)求tan∠CDE的值;
(3)求圓心O到弦ED的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的弦,點(diǎn)C為半徑OA的中點(diǎn),過(guò)點(diǎn)C作CD⊥OA交弦AB于點(diǎn)E,連接BD,且DE=DB.
(1)判斷BD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若CD=15,BE=10,tanA=,求⊙O的直徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com