【題目】如圖,直線y=2x與雙曲線y=在第一象限的交點(diǎn)為A,過點(diǎn)A作AB⊥x軸于B,將△ABO繞點(diǎn)O旋轉(zhuǎn)90°,得到△A′B′O,則點(diǎn)A′的坐標(biāo)為( )
A.(1,0)
B.(1,0)或(﹣1,0)
C.(2,0)或(0,﹣2)
D.(﹣2,1)或(2,﹣1)
【答案】D
【解析】
試題分析:聯(lián)立直線與反比例解析式,求出交點(diǎn)A的坐標(biāo),將△ABO繞點(diǎn)O旋轉(zhuǎn)90°,得到△A′B′O,利用圖形及A的坐標(biāo)即可得到點(diǎn)A′的坐標(biāo).
解:聯(lián)立直線與反比例解析式得:,
消去y得到:x2=1,
解得:x=1或﹣1,
∴y=2或﹣2,
∴A(1,2),即AB=2,OB=1,
根據(jù)題意畫出相應(yīng)的圖形,如圖所示,
可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1,
根據(jù)圖形得:點(diǎn)A′的坐標(biāo)為(﹣2,1)或(2,﹣1).
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(-2,a2+1),則點(diǎn)P所在的象限是( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組線段能組成一個(gè)三角形的是( )
A. 4cm,6cm,11cm B. 4cm,5cm,1cm
C. 3cm,4cm,5cm D. 2cm,3cm,6cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的口袋中有3個(gè)大小相同的小球,球面上分別寫有數(shù)字1,2,3,從袋中隨機(jī)摸出一個(gè)小球,記錄下數(shù)字后放回,再隨機(jī)摸出一個(gè)小球.
(1)請(qǐng)用樹狀圖或列表法中的一種,列舉出兩次摸出的球上數(shù)字的所有可能結(jié)果;
(2)求兩次摸出球上的數(shù)字的積為奇數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平行四邊形ABCD中,∠A=90°,AB=6cm,BC=12cm,點(diǎn)E由點(diǎn)A出發(fā)沿AB方向向點(diǎn)B勻速移動(dòng),速度為1cm/s,點(diǎn)F由點(diǎn)B出發(fā)沿BC方向向點(diǎn)C勻速移動(dòng),速度為2cm/s,如果動(dòng)點(diǎn)E、F同時(shí)從A、B兩點(diǎn)出發(fā),連接EF,若設(shè)運(yùn)動(dòng)時(shí)間為ts,解答下列問題.
(1)當(dāng)t為 時(shí),△BEF為等腰直角三角形;
(2)當(dāng)t為 時(shí),△DFC為等腰直角三角形;
(3)是否存在某一時(shí)刻,使△EFB∽△FDC?若存在,求出t的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果從一個(gè)多邊形的一個(gè)頂點(diǎn)出發(fā)作它的對(duì)角線,最多能將多邊形分成5個(gè)三角形,那么從這個(gè)多邊形的一個(gè)頂點(diǎn)出發(fā)對(duì)角線有( ) 條
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com