【題目】如圖,某河堤的橫斷面是梯形ABCD,BC∥AD,BE⊥AD于點(diǎn)E,AB=50米,BC=30米,∠A=60°,∠D=30°.求AD的長(zhǎng)度.
【答案】解:作CF⊥AD于點(diǎn)F,
∵BE⊥AD,AB=50米,∠A=60°,
∴BE=ABsin60°=50× =25 ,
∴AE= =25,
∵BC∥AD,CF⊥AD,
∴CF=BE=25,EF=BC=30,在Rt△CFD中,∠D=30°,
∴FD=
= =75,
∴AD=AE+EF+FD=25+30+75=130(米).
【解析】作CF⊥AD于點(diǎn)F,在Rt△ABE中,利用銳角三角形函數(shù)得出BE的長(zhǎng),再利用勾股定理得出AE的長(zhǎng),根據(jù)題意知四邊形EFCB是矩形,根據(jù)矩形的性質(zhì)得出CF=BE=25,EF=BC=30,在Rt△CFD中,∠D=30°,根據(jù)正切函數(shù)的定義得出FD的長(zhǎng),然后根據(jù)AD=AE+EF+FD得出答案。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,DE=CE,連接AE并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:△ADE≌△FCE;
(2)若AB=2BC,∠F=36°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
類比定義:我們知道:分式和分?jǐn)?shù)有著很多的相似點(diǎn).如類比分?jǐn)?shù)的基本性質(zhì),我們得到了分式的基本性質(zhì);類比分?jǐn)?shù)的運(yùn)算法則,我們得到了分式的運(yùn)算法則等等.小學(xué)里,把分子比分母小的分?jǐn)?shù)叫做真分?jǐn)?shù),類似地,我們把分子整式的次數(shù)小于分母整式的次數(shù)的分式稱為真分式;反之,稱為假分式.
拓展定義:
對(duì)于任何一個(gè)分式都可以化成整式與真分式的和的形式,
如:;
.
理解定義:
(1)下列分式中,屬于真分式的是:____屬于假分式的是:_____(填序號(hào))
①;②;③;④.
拓展應(yīng)用:
(2)將分式化成整式與真分式的和的形式;
(3)將假分式化成整式與真分式的和的形式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組: 請(qǐng)結(jié)合題意填空,完成本題的解答:
(i)解不等式(1),得;
(ii)解不等式(2),得;
(iii)把不等式(1)和(2)的解集在數(shù)軸上表示出來:
(iv)原不等式的解集為: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知,,;
(1)若,則__________;
(2)請(qǐng)?zhí)剿?/span>與之間滿足的數(shù)量關(guān)系?說明理由;
(3)如圖2,已知平分,平分,反向延長(zhǎng)交于點(diǎn),求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車專賣店銷售A,B兩種型號(hào)的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售2輛A型車和1輛B型車,銷售額為62萬元.
(1)求每輛A型車和B型車的售價(jià)各多少萬元.
(2)甲公司擬向該店購買A,B兩種型號(hào)的新能源汽車共6輛,購車費(fèi)不少于130萬元,且不超過140萬元. 則有哪幾種購車方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為8的正方形ABCD中,點(diǎn)O為AD上一動(dòng)點(diǎn)(4<OA<8),以O(shè)為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)M,連接OM,過點(diǎn)M作⊙O的切線交邊BC于N.
(1)求證:△ODM∽△MCN;
(2)設(shè)DM=x,OA=R,求R關(guān)于x的函數(shù)關(guān)系式;
(3)在動(dòng)點(diǎn)O逐漸向點(diǎn)D運(yùn)動(dòng)(OA逐漸增大)的過程中,△CMN的周長(zhǎng)如何變化?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,我們把杜甫(絕句)整齊排列放在平面直角坐標(biāo)系中:
(1)“東”、“窗”和“柳”的坐標(biāo)依次是:______、______和________.;
(2)將第1行與第3行對(duì)調(diào),再將第4列與第6列對(duì)調(diào),“里”由開始的坐標(biāo)________依次變換到:________和________;
(3)“門”開始的坐標(biāo)是(1,1),使它的坐標(biāo)到(3,2),應(yīng)該哪兩行對(duì)調(diào),同時(shí)哪兩列對(duì)調(diào)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O的內(nèi)接四邊形ACDB中,AB為直徑,AC:BC=1:2,點(diǎn)D為弧AB的中點(diǎn),BE⊥CD垂足為E.
(1)求∠BCE的度數(shù);
(2)求證:D為CE的中點(diǎn);
(3)連接OE交BC于點(diǎn)F,若AB= ,求OE的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com