【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD與過點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DC與AB的延長(zhǎng)線相交于點(diǎn)P,弦CE平分∠ACB,交AB于點(diǎn)F,連接BE.
(1)求證:AC平分∠DAB;
(2)求證:△PCF是等腰三角形;
(3)若AF=6,EF=2,求⊙O的半徑長(zhǎng).
【答案】(1)證明見解析(2)證明見解析(3)4
【解析】
(1)根據(jù)切線的性質(zhì)得OC⊥AD,而AD⊥DP,則肯定判斷OC∥AD,根據(jù)平行線的性質(zhì)得∠DAC=∠OCA,加上∠OAC=∠OCA,所以∠OAC=∠DAC;
(2)根據(jù)圓周角定理由AB為⊙O的直徑得∠ACB=90°,則∠BCE=45°,再利用圓周角定理得∠BOE=2∠BCE=90°,則∠OFE+∠OEF=90°,易得∠CFP+∠OEF=90°,再根據(jù)切線的性質(zhì)得到∠OCF+∠PCF=90°,而∠OCF=∠OEF,根據(jù)等角的余角相等得到∠PCF=∠CFP,于是可判斷△PCF是等腰三角形;
(3)連結(jié)OE.由AB為⊙O的直徑,得到∠ACB=90°,根據(jù)角平分線的定義得到∠BCE=45°,設(shè)⊙O的半徑為r,則OF=6-r,根據(jù)勾股定理列方程即可得到結(jié)論.
(1)證明:∵PD為⊙O的切線,
∴OC⊥DP,
∵AD⊥DP,
∴OC∥AD,
∴∠DAC=∠OCA,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠OAC=∠DAC,
∴AC平分∠DAB;
(2)證明:∵AB為⊙O的直徑,
∴∠ACB=90°,
∵CE平分∠ACB,
∴∠BCE=45°,
∴∠BOE=2∠BCE=90°,
∴∠OFE+∠OEF=90°,
而∠OFE=∠CFP,
∴∠CFP+∠OEF=90°,
∵OC⊥PD,
∴∠OCP=90°,即∠OCF+∠PCF=90°,
而∠OCF=∠OEF,
∴∠PCF=∠CFP,
∴△PCF是等腰三角形;
(3)解:連結(jié)OE.
∵AB為⊙O的直徑,∴∠ACB=90°,
∵CE平分∠ACB,∴∠BCE=45°,
∴∠BOE=90°,即OE⊥AB,
設(shè)⊙O的半徑為r,則OF=6-r,
在Rt△EOF中,∵OE2+OF2=EF2,
∴r2+(6-r)2=(2)2,
解得,r1=4,r2=2,
當(dāng)r1=4時(shí),OF=6-r=2(符合題意),
當(dāng)r2=2時(shí),OF=6-r=4(不合題意,舍去),
∴⊙O的半徑r=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,2),B(p,q)在直線上,拋物線m經(jīng)過點(diǎn)B、C(p+4,q),且它的頂點(diǎn)N在直線l上.
(1)若B(-2,1),
①請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系中畫出直線l與拋物線m的示意圖;
②設(shè)拋物線m上的點(diǎn)Q的模坐標(biāo)為e(-2≤e≤0)過點(diǎn)Q作x軸的垂線,與直線l交于點(diǎn)H.若QH=d,當(dāng)d隨e的增大面增大時(shí),求e的取值范圍;
(2)拋物線m與y軸交于點(diǎn)F,當(dāng)拋物線m與x軸有唯一交點(diǎn)時(shí),判斷△NOF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A(,1)在反比例函數(shù)y=的圖象上.
(1)求反比例函數(shù)y=的表達(dá)式;
(2)在x軸上是否存在一點(diǎn)P,使得S△AOP=S△AOB,若存在,求所有符合條件點(diǎn)P的坐標(biāo);若不存在,簡(jiǎn)述你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】合肥周谷堆農(nóng)副產(chǎn)品批發(fā)市場(chǎng)某商鋪購進(jìn)一批紅薯,通過商店批發(fā)和在淘寶網(wǎng)上進(jìn)行銷售.首月進(jìn)行了銷售情況的統(tǒng)計(jì),其中商店日批發(fā)量(百斤)與時(shí)間(為整數(shù),單位:天)的部分對(duì)應(yīng)值如下表所示;在淘寶網(wǎng)上的日銷售量(百斤)與時(shí)間(為整數(shù),單位:天)的部分對(duì)應(yīng)值如圖所示.
時(shí)間(天) | 0 | 5 | 10 | 150 | 20 | 25 | 30 |
日批發(fā)量(百斤) | 025 | 40 | 45 | 40 | 25 | 0 |
(1)請(qǐng)你在一次函數(shù)、二次函數(shù)和反比例函數(shù)中,選擇合適的函數(shù)能反映與的變化規(guī)律,求出與之間的函數(shù)關(guān)系式;
(2)求與之間的函數(shù)關(guān)系式;
(3)設(shè)這個(gè)月中,日銷售總量為,求出與之間的函數(shù)關(guān)系式,并求出當(dāng)為何值時(shí),日銷售總量最大,最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,過B,C兩點(diǎn)的⊙O交AC于點(diǎn)D,交AB于點(diǎn)E,連接EO并延長(zhǎng)交⊙O于點(diǎn)F.連接BF,CF.若∠EDC=135°,CF=,則AE2+BE2的值為 ( )
A. 8 B. 12 C. 16 D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮玩一個(gè)游戲:三張大小、質(zhì)地都相同的卡片上分別標(biāo)有數(shù)字2,3,4(背面完全相同),現(xiàn)將標(biāo)有數(shù)字的一面朝下.小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計(jì)算小明和小亮抽得的兩個(gè)數(shù)字之和.若和為奇數(shù),則小明勝;若和為偶數(shù),則小亮勝.
(1)請(qǐng)你用畫樹狀圖或列表的方法,求出這兩數(shù)和為6的概率.
(2)你認(rèn)為這個(gè)游戲規(guī)則對(duì)雙方公平嗎?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種水果,迸價(jià)為每箱40元,規(guī)定售價(jià)不低于進(jìn)價(jià).現(xiàn)在的售價(jià)為每箱72元,每月可銷售60箱.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):若這種牛奶的售價(jià)每降低2元,則每月的銷量將增加10箱,設(shè)每箱水果降價(jià)x元(x為偶數(shù)),每月的銷量為y箱.
(1)寫出y與x之間的函數(shù)關(guān)系式和自變量x的取值范圍.
(2)若該超市在銷售過程中每月需支出其他費(fèi)用500元,則如何定價(jià)才能使每月銷售水果的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,點(diǎn)E在邊AD上,以BE為折痕,將△ABE向上翻折,點(diǎn)A正好落在邊CD上的點(diǎn)F處,若△DEF的周長(zhǎng)為8,△CBF的周長(zhǎng)為18,則FC的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等腰三角形,AB=AC,D為△ABC內(nèi)一點(diǎn),連接AD,將線段AD繞點(diǎn)A旋轉(zhuǎn)至AE,使得∠DAE=∠BAC,F(xiàn),G,H分別為BC,CD,DE的中點(diǎn),連接BD,CE,GF,GH.
(1)求證:GH=GF;
(2)試說明∠FGH與∠BAC互補(bǔ).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com