精英家教網 > 初中數學 > 題目詳情

【題目】如圖,隧道的截面由拋物線和長方形構成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標系,拋物線可以用y=﹣ x2+bx+c表示,且拋物線的點C到墻面OB的水平距離為3m時,到地面OA的距離為 m.

(1)求該拋物線的函數關系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內設雙向行車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

【答案】
(1)解:根據題意得B(0,4),C(3, ),

把B(0,4),C(3, )代入y=﹣ x2+bx+c得

解得

所以拋物線解析式為y=﹣ x2+2x+4,

則y=﹣ (x﹣6)2+10,

所以D(6,10),

所以拱頂D到地面OA的距離為10m


(2)解:由題意得貨運汽車最外側與地面OA的交點為(2,0)或(10,0),

當x=2或x=10時,y= >6,

所以這輛貨車能安全通過


(3)解:令y=8,則﹣ (x﹣6)2+10=8,解得x1=6+2 ,x2=6﹣2

則x1﹣x2=4 ,

所以兩排燈的水平距離最小是4 m


【解析】(1)先確定B點和C點坐標,然后利用待定系數法求出拋物線解析式,再利用配方法確定頂點D的坐標,從而得到點D到地面OA的距離;(2)由于拋物線的對稱軸為直線x=6,而隧道內設雙向行車道,車寬為4m,則貨運汽車最外側與地面OA的交點為(2,0)或(10,0),然后計算自變量為2或10的函數值,再把函數值與6進行大小比較即可判斷;(3)拋物線開口向下,函數值越大,對稱點之間的距離越小,于是計算函數值為8所對應的自變量的值即可得到兩排燈的水平距離最小值.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某校隨機抽查了10名參加2016年云南省初中學業(yè)水平考試學生的體育成績,得到的結果如表:

成績(分)

46

47

48

49

50

人數(人)

1

2

1

2

4

下列說法正確的是( )
A.這10名同學的體育成績的眾數為50
B.這10名同學的體育成績的中位數為48
C.這10名同學的體育成績的方差為50
D.這10名同學的體育成績的平均數為48

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=﹣ x2+bx+c與x軸交于A,B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).

(1)求拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,△CBF的面積最大?求出△CBF的最大面積及此時E點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸相交于A,B兩點,與y軸相交于點C(0,3),點B坐標是(3,0),設拋物線的頂點為點D.

(1)求此拋物線的解析式與對稱軸;
(2)作直線BC,與拋物線的對稱軸交于點E,點P為直線BC上方的二次函數上一個動點(且點P與點B,C不重合),過點P作PF∥DE交直線BC于點F,設點P的橫坐標為m;
①用含m的代數式表示線段PF的長,并求出當m為何值時,四邊形PDEF為平行四邊形?
②設△PBC的面積為S,求S與m的函數關系式.S是否存在最大值?若存在,求出最大值并求出此時P點坐標,若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】探究活動有一圓柱形食品盒,它的高等于8cm,底面直徑為cm,螞蟻爬行的速度為2cm/s

(1)如果在盒內下底面的A處有一只螞蟻,它想吃到盒內對面中部點B處的食物,那么它至少需要多少時間?(盒的厚度和螞蟻的大小忽略不計,結果可含根號)

(2)如果在盒外下底面的A處有一只螞蟻,它想吃到盒內對面中部點B處的食物,那么它至少需要多少時間?(盒的厚度和螞蟻的大小忽略不計)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).

①以原點O為對稱中心,畫出△ABC關于原點O對稱的△A1B1C1;
②將△ABC繞A點逆時針旋轉90°得到△AB2C2 , 畫出△AB2C2 , 并求出AC掃過的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,邊長12的正方形ABCD中,有一個小正方形EFGH,其中E,F(xiàn),G分別在AB,BC,F(xiàn)D上.若BF=3,則小正方形的邊長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,長方形MNPO的邊OMx軸上,邊OPy軸上,點N的坐標為(3,9),將矩形沿對角線PM翻折,N點落在F點的位置,且FMy軸于點E,那么點F的坐標為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列方程,是一元二次方程的是(
①3x2+x=20,②2x2﹣3xy+4=0,③x2 =4,④x2=0,⑤x2﹣3x﹣4=0.
A.①②
B.①②④⑤
C.①③④
D.①④⑤

查看答案和解析>>

同步練習冊答案