(2008•鹽城)如圖,D、E兩點分別在△ABC的邊AB,AC上,DE與BC不平行,當(dāng)滿足條件    (寫出一個即可)時,△ADE∽△ACB.
【答案】分析:根據(jù)已知及相似三角形的判定方法進行分析即可得到所缺的條件.
解答:解:∵∠A=∠A
∴當(dāng)∠ADE=∠C或∠AED=∠B或AD:AC=AE:AB或AD•AB=AC•AE時兩三角形相似.
點評:此題考查了相似三角形的判定:
①如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似;
②如果兩個三角形的兩條對應(yīng)邊的比相等,且夾角相等,那么這兩個三角形相似;
③如果兩個三角形的兩個對應(yīng)角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2008•鹽城)如圖,直線y=x+b經(jīng)過點B(-,2),且與x軸交于點A,將拋物線y=x2沿x軸作左右平移,記平移后的拋物線為C,其頂點為P.
(1)求∠BAO的度數(shù);
(2)拋物線C與y軸交于點E,與直線AB交于兩點,其中一個交點為F,當(dāng)線段EF∥x軸時,求平移后的拋物線C對應(yīng)的函數(shù)關(guān)系式;
(3)在拋物線y=x2平移過程中,將△PAB沿直線AB翻折得到△DAB,點D能否落在拋物線C上?如能,求出此時拋物線C頂點P的坐標(biāo);如不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省黃石市中考數(shù)學(xué)調(diào)研試卷(解析版) 題型:解答題

(2008•鹽城)如圖,直線y=x+b經(jīng)過點B(-,2),且與x軸交于點A,將拋物線y=x2沿x軸作左右平移,記平移后的拋物線為C,其頂點為P.
(1)求∠BAO的度數(shù);
(2)拋物線C與y軸交于點E,與直線AB交于兩點,其中一個交點為F,當(dāng)線段EF∥x軸時,求平移后的拋物線C對應(yīng)的函數(shù)關(guān)系式;
(3)在拋物線y=x2平移過程中,將△PAB沿直線AB翻折得到△DAB,點D能否落在拋物線C上?如能,求出此時拋物線C頂點P的坐標(biāo);如不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年江蘇省鹽城市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•鹽城)如圖,直線y=x+b經(jīng)過點B(-,2),且與x軸交于點A,將拋物線y=x2沿x軸作左右平移,記平移后的拋物線為C,其頂點為P.
(1)求∠BAO的度數(shù);
(2)拋物線C與y軸交于點E,與直線AB交于兩點,其中一個交點為F,當(dāng)線段EF∥x軸時,求平移后的拋物線C對應(yīng)的函數(shù)關(guān)系式;
(3)在拋物線y=x2平移過程中,將△PAB沿直線AB翻折得到△DAB,點D能否落在拋物線C上?如能,求出此時拋物線C頂點P的坐標(biāo);如不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《圖形的相似》(07)(解析版) 題型:解答題

(2008•鹽城)如圖,在12×12的正方形網(wǎng)格中,△TAB的頂點坐標(biāo)分別為T(1,1)、A(2,3)、B(4,2)
(1)以點T(1,1)為位似中心,按比例尺(TA′:TA)=3:1在位似中心的同側(cè)將△TAB放大為△TA′B′,放大后點A、B的對應(yīng)點分別為A′、B′.畫出△TA′B′,并寫出點A′、B′的坐標(biāo);
(2)在(1)中,若C(a,b)為線段AB上任一點,寫出變化后點C的對應(yīng)點C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省江陰市中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

(2008•鹽城)如圖,正方形卡片A類,B類和長方形卡片C類若干張,如果要拼一個長為(a+2b),寬為(a+b)的大長方形,則需要C類卡片    張.

查看答案和解析>>

同步練習(xí)冊答案