【題目】如圖,菱形ABCD邊長(zhǎng)為5,頂點(diǎn)A,B在x軸的正半軸上,頂點(diǎn)D在y軸的正半軸上,且點(diǎn)A的坐標(biāo)是(3,0),以點(diǎn)C為頂點(diǎn)的拋物線經(jīng)過(guò)點(diǎn)A.
(1)求點(diǎn)C的坐標(biāo);
(2)求拋物線的解析式;
(3)若將上述拋物線進(jìn)行平移,使得平移后的拋物線的頂點(diǎn)P在直線BC上,且此時(shí)的拋物線恰好經(jīng)過(guò)點(diǎn)D,求平移后的拋物線解析式及其頂點(diǎn)P的坐標(biāo).
【答案】(1)點(diǎn)C(5,4);(2)y=﹣(x﹣5)2+4;(3)y=﹣(x﹣2)2﹣8或y=﹣(x+)2+24,點(diǎn)P(2,﹣8)或(﹣,24).
【解析】
(1)OA=3,AD=5,則DO=4,故點(diǎn)D(0,4),點(diǎn)C(5,4);
(2)拋物線的表達(dá)式為:y=a(x-5)2+4,將點(diǎn)A的坐標(biāo)代入上式并解得:a=-1,即可求解;
(3)直線BC的表達(dá)式為:;設(shè)點(diǎn)P的坐標(biāo)為:(m,),而點(diǎn)D(0,4),則拋物線的表達(dá)式為:y=-(x-m)2,將點(diǎn)D的坐標(biāo)代入上式并整理得:3m2+4m-20=0,即可求解.
(1)OA=3,AD=5,則DO=4,故點(diǎn)D(0,4),點(diǎn)C(5,4);
(2)拋物線的表達(dá)式為:y=a(x﹣5)2+4,將點(diǎn)A的坐標(biāo)代入上式并解得:a=﹣1,
故拋物線的表達(dá)式為:y=﹣(x﹣5)2+4;
(3)點(diǎn)A的坐標(biāo)是(3,0),AB=5,則點(diǎn)B(8,0),將點(diǎn)B、C的坐標(biāo)代入一次函數(shù)表達(dá)式y=kx+b得:,解得:,
故直線BC的表達(dá)式為:y=﹣x+;
設(shè)點(diǎn)P的坐標(biāo)為:(m,﹣m+),而點(diǎn)D(0,4),
則拋物線的表達(dá)式為:y=﹣(x﹣m)2﹣m+,
將點(diǎn)D的坐標(biāo)代入上式并整理得:3m2+4m﹣20=0,解得:m=2或﹣,
故點(diǎn)P(2,﹣8)或(﹣,24),
故拋物線的表達(dá)式為:y=﹣(x﹣2)2﹣8或y=﹣(x+)2+24.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】萬(wàn)州二中八十周年校慶來(lái)臨之際,學(xué)校本著“簡(jiǎn)樸,節(jié)儉,實(shí)效,特色”的原則將 2019年 10 月 25 日至 11 月 25 日定為校友回訪月,學(xué)校總務(wù)處購(gòu)買了紅,黃,藍(lán)三種花卉裝扮 出 A,B,C,D 四種造型,其中一個(gè) A 造型需要 15 盆紅花,10 盆黃花,10 盆藍(lán)花;一個(gè) B 造型需要 5 盆紅花,7 盆黃花,6 盆藍(lán)花;一個(gè) C 造型需要 7 盆紅花,8 盆黃花,9 盆藍(lán) 花;一個(gè) D 造型需要 7 盆紅花,10 盆黃花,10 盆藍(lán)花,若一個(gè) A 造型售價(jià) 1800 元,利潤(rùn) 率為 20%,一個(gè) B 和一個(gè) C 造型一共成本和為 1935 元,且一盆紅花的利潤(rùn)率為 25%,則一個(gè) D 造型的售價(jià)為_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,圖形G上點(diǎn)P(x,y)的縱坐標(biāo)y與其橫坐標(biāo)x的差y-x稱為P點(diǎn)的“坐標(biāo)差”,而圖形G上所有點(diǎn)的“坐標(biāo)差”中的最大值稱為圖形G的“特征值”
(1)①點(diǎn)A(1,3) 的“坐標(biāo)差”為 。
②拋物線y=-x2+3x+3的“特征值”為 。
(2)某二次函數(shù)y=-x2+bx+c(c≠0) 的“特征值”為1,點(diǎn)B(m,0)與點(diǎn)C分別是此二次函數(shù)的圖象與x軸和y軸的交點(diǎn),且點(diǎn)B與點(diǎn)C的“坐標(biāo)差”相等。
①直接寫出m= (用含c的式子表示)
②求此二次函數(shù)的表達(dá)式。
(3)如圖,在平面直角坐標(biāo)系xOy中,以M(2,3)為圓心,2為半徑的圓與直線y=x相交于點(diǎn)D、E請(qǐng)直接寫出⊙M的“特征值”為 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與雙曲線相交于點(diǎn),,與軸交于點(diǎn).
(1)求直線的解析式;
(2)若點(diǎn)在軸上,且,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=120°,點(diǎn)D為AB邊上一點(diǎn)(不與點(diǎn)B重合),連接CD,將線段CD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)C的對(duì)應(yīng)點(diǎn)為E,連接BE.若AB=2,則△BDE面積的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在2014年巴西世界杯足球賽前夕,某體育用品店購(gòu)進(jìn)一批單價(jià)為40元的球服,如果按單價(jià)60元銷售,那么一個(gè)月內(nèi)可售出240套,根據(jù)銷售經(jīng)驗(yàn),提高銷售單價(jià)會(huì)導(dǎo)致銷售量的減少,即銷售單價(jià)每提高5元,銷售量相應(yīng)減少20套,設(shè)銷售單價(jià)為x(120>x≥60)元,銷售量為y套.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)為多少元時(shí),月銷售額為14000元,此月共盈利多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E,F分別為正方形ABCD的邊BC,CD上一點(diǎn),AC,BD交于點(diǎn)O,且∠EAF=45°,AE,AF分別交對(duì)角線BD于點(diǎn)M,N,則有以下結(jié)論:①∠AEB=∠AEF=∠ANM;②EF=BE+DF;③△AOM∽△ADF;④S△AEF=2S△AMN,以上結(jié)論中,正確的是______ .(請(qǐng)把正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在反比例函數(shù)y= 的圖象上有一動(dòng)點(diǎn)A,連接AO并延長(zhǎng)交圖象的另一支于點(diǎn)B,在第二象限內(nèi)有一點(diǎn)C,滿足AC=BC,當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí),點(diǎn)C始終在函數(shù)y= 的圖象上運(yùn)動(dòng),若tan∠CAB=2,則k的值為( )
A. ﹣3 B. ﹣6 C. ﹣9 D. ﹣12
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com