【題目】如圖,拋物線y=x2+bx+cx軸交于A、B兩點(diǎn),B點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C0,﹣3

1)求拋物線的解析式;

2)點(diǎn)P在拋物線位于第四象限的部分上運(yùn)動(dòng),當(dāng)四邊形ABPC的面積最大時(shí),求點(diǎn)P的坐標(biāo)和四邊形ABPC的最大面積.

3)直線l經(jīng)過A、C兩點(diǎn),點(diǎn)Q在拋物線位于y軸左側(cè)的部分上運(yùn)動(dòng),直線m經(jīng)過點(diǎn)B和點(diǎn)Q,是否存在直線m,使得直線lmx軸圍成的三角形和直線l、my軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請(qǐng)說明理由.

【答案】(1;(2P點(diǎn)坐標(biāo)為(, )時(shí),四邊形ABPC的面積最大,最大面積為;(3)存在,

【解析】試題分析:(1)由B、C兩點(diǎn)的坐標(biāo),利用待定系數(shù)法可求得拋物線的解析式;

2)連接BC,則△ABC的面積是不變的,過PPM∥y軸,交BC于點(diǎn)M,設(shè)出P點(diǎn)坐標(biāo),可表示出PM的長,可知當(dāng)PM取最大值時(shí)△PBC的面積最大,利用二次函數(shù)的性質(zhì)可求得P點(diǎn)的坐標(biāo)及四邊形ABPC的最大面積;

3)設(shè)直線my軸交于點(diǎn)N,交直線l于點(diǎn)G,由于∠AGP=∠GNC+∠GCN,所以當(dāng)△AGB△NGC相似時(shí),必有∠AGB=∠CGB=90°,則可證得△AOC≌△NOB,可求得ON的長,可求出N點(diǎn)坐標(biāo),利用B、N兩的點(diǎn)坐標(biāo)可求得直線m的解析式.

試題解析:

1)把B、C兩點(diǎn)坐標(biāo)代入拋物線解析式可得: ,解得: ,拋物線解析式為;

2)如圖1,連接BC,過Py軸的平行線,交BC于點(diǎn)M,交x軸于點(diǎn)H,

中,令y=0可得,解得x=﹣1x=3A點(diǎn)坐標(biāo)為(﹣1,0),AB=3﹣﹣1=4,且OC=3,SABC=ABOC=×4×3=6,B3,0),C0,﹣3),直線BC解析式為y=x﹣3,設(shè)P點(diǎn)坐標(biāo)為(x,),則M點(diǎn)坐標(biāo)為(x,x﹣3),P點(diǎn)在第四限,PM==,SPBC=PMOH+PMHB=PMOH+HB=PMOB=PM,當(dāng)PM有最大值時(shí),PBC的面積最大,則四邊形ABPC的面積最大,PM==,當(dāng)x=時(shí),PMmax=,則SPBC==,此時(shí)P點(diǎn)坐標(biāo)為(, ),S四邊形ABPC=SABC+SPBC=6+=,即當(dāng)P點(diǎn)坐標(biāo)為()時(shí),四邊形ABPC的面積最大,最大面積為;

3)如圖2,設(shè)直線my軸于點(diǎn)N,交直線l于點(diǎn)G,則AGP=GNC+GCN,當(dāng)AGBNGC相似時(shí),必有AGB=CGB,又AGB+CGB=180°,∴∠AGB=CGB=90°,∴∠ACO=OBN,在RtAONRtNOB中,∵∠AOC=NOBOC=OB,ACO=NBO,RtAONRtNOBASA),ON=OA=1,N點(diǎn)坐標(biāo)為(0,﹣1),設(shè)直線m解析式為y=kx+d,把B、N兩點(diǎn)坐標(biāo)代入可得,解得:,直線m解析式為,即存在滿足條件的直線m,其解析式為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是(  )

A. a8÷a2=a4 B. a3a2=a6 C. (﹣2a3)2=4a9 D. 6x23xy=18x3y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】xy5,xy1,則式子x2y2的值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】﹣21÷﹣7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校規(guī)定學(xué)生的數(shù)學(xué)學(xué)期評(píng)定成績滿分為100,其中平時(shí)成績占50%,期中考試成績占20%,期末考試成績占30%.小紅的三項(xiàng)成績(百分制)依次是86、70、90,小紅這學(xué)期的數(shù)學(xué)學(xué)期評(píng)定成績是(  )

A. 90B. 86C. 84D. 82

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知(xy)21,(xy)249x2y2的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種植物的主干長出若干數(shù)目的支干,每個(gè)支干又長出相同數(shù)目的小分支,若小分支、支干和主干的總數(shù)目是73,則每個(gè)支干長出的小分支的數(shù)目為(  )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若三角形三邊長為整數(shù),周長為11,且有一邊長為4,則此三角形中最長的邊是(  )
A.7
B.6
C.5
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生對(duì)電視節(jié)目的喜愛情況,隨機(jī)調(diào)查了部分學(xué)生最喜愛哪一類節(jié)目 (被調(diào)查的學(xué)生只選一類并且沒有不選擇的),并將調(diào)查結(jié)果制成了如下的兩個(gè)統(tǒng)計(jì)圖(不完整).請(qǐng)你根據(jù)圖中所提供的信息,完成下列問題:

(1)求本次調(diào)查的學(xué)生人數(shù);

(2)請(qǐng)將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整,并求出新聞節(jié)目在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);

(3)若該中學(xué)有2000名學(xué)生,請(qǐng)估計(jì)該校喜愛電視劇節(jié)目的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案