【題目】如圖,P(m,n)是拋物線y=﹣+1上任意一點,l是過點(0,2)且與x軸平行的直線,過點P作直線PH⊥l,垂足為H,PH交x軸于Q.

(1)(探究)填空:當m=0時,OP=   ,PH=   ;當m=4時,OP=   ,PH=   

(2)(證明)對任意m,n,猜想OP與PH的大小關(guān)系,并證明你的猜想.

(3)(應(yīng)用)當OP=OH,且m≠0時,求P點的坐標.

【答案】(1)1,1,5,5;(2)OP=PH;(3)P(2,﹣2)或(﹣2,﹣2).

【解析】

(1)根據(jù)勾股定理,可得OP的長,根據(jù)點到直線的距離,可得可得PH的長;

(2)根據(jù)圖象上的點滿足函數(shù)解析式,可得點的坐標,根據(jù)勾股定理,可得PO的長,根據(jù)點到直線的距離,可得PH的長;

(3)當OP=OH,且m≠0時,由(2)可知OPH是等邊三角形,進而求得∠HOQ=30°,解直角三角形即可求得.

解:(1)當m=0時,P(0,1),OP=1,PH=2﹣1=1;

m=4時,y=﹣3,P(4,﹣3),OP==5,PH=2﹣(﹣3)=5,

故答案為:1,1,5,5;

(2)猜想:OP=PH,

證明:PHx軸與點Q,

Py=﹣x2+1上,

∴設(shè)P(m,﹣m2+1),PQ=|﹣x2+1|,OQ=|m|,

∵△OPQ是直角三角形,

OP====m2+1,

PH=2﹣yp=2+m2﹣1=m2+1

OP=PH.

(3)OP=PH,

∴當OP=OH,三角形OPH是等邊三角形,

OQPH,

∴∠HOQ=30°,

OQ=HQ=2

P點的橫坐標為±2,

P(2,﹣2)或(﹣2,﹣2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作:如圖,在正方形 ABCD 中,P 是 CD 上一動點(與 C,D 不重合,使三角板的直角頂點與點 P 重合,并且一條直角邊始終經(jīng)過點 B,另一直角邊與正方形的某一邊所在直線交于點 E.

(1)根據(jù)操作結(jié)果,畫出符合條件的圖形;

(2)觀察所畫圖形,寫出一個與△BPC 相似的三角形,并說明理由;

(3)當點 P 位于 CD 的中點時,直接寫出(2)中兩對相似三角形的相似比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+cx軸交于點A,B,與y軸交于點C,直線BC的解析式為y=﹣x+6.

(1)求拋物線的解析式;

(2)M為線段BC上方拋物線上的任意一點,連接MB,MC,點N為拋物線對稱軸上任意一點,當M到直線BC的距離最大時,求點M的坐標及MN+NB的最小值;

(3)(2)中,點M到直線BC的距離最大時,連接OMBC于點E,將原拋物線沿射線OM平移,平移后的拋物線記為y′,當y′經(jīng)過點M時,它的對稱軸與x軸的交點記為H.將△BOE繞點B逆時針旋轉(zhuǎn)60°至△BO1E1,再將△BO1E1沿著直線O1H平移,得到△B1O2E2,在平面內(nèi)是否存在點F,使以點C,H,B1,F(xiàn)為頂點的四邊形是以B1H為邊的菱形.若存在,直接寫出點B1的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,中,于點于點,連接

1)若,,求的周長;

2)如圖2,若,,的角平分線于點,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,邊上的一點,,交邊于,,,

1是等腰三角形嗎?請說明理由;

2)連結(jié),當 度時,是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+2x+cx軸交A(﹣1,0),B兩點,與y軸交于點C(0,3),拋物線的頂點為點E.

(1)求拋物線的解析式;

(2)經(jīng)過B,C兩點的直線交拋物線的對稱軸于點D,點P為直線BC上方拋物線上的一個動點,當點P運動到點E時,求△PCD的面積;

(3)N在拋物線對稱軸上,點Mx軸上,是否存在這樣的點M與點N,使以M,N,C,B為頂點的四邊形是平行四邊形?若存在,請直接寫出點M的坐標(不寫求解過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格中,每個小正方形的邊長都是單位1,△ABC在平面直角坐標系中的位置如圖.

1)畫出將△ABC向右平移2個單位得到△A1B1C1

2)畫出將△ABC繞點O順時針方向旋轉(zhuǎn)90°得到的△A2B2C2

3)在x軸上找一點P,滿足點P到點C1C2距離之和最小,并求出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)a<0)圖象與x軸的交點AB的橫坐標分別為﹣3,1,與y軸交于點C,下面四個結(jié)論:

①16a﹣4b+c<0;②P(﹣5,y1),Qy2)是函數(shù)圖象上的兩點,則y1y2;③a=﹣c;④ABC是等腰三角形,則b=﹣.其中正確的有______(請將結(jié)論正確的序號全部填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)圖象的頂點在原點O,經(jīng)過點A1,);點F0,1)在y軸上.直線y=﹣1y軸交于點H

1)求二次函數(shù)的解析式;

2)點P是(1)中圖象上的點,過點Px軸的垂線與直線y=﹣1交于點M,求證:FM平分∠OFP;

3)當△FPM是等邊三角形時,求P點的坐標.

查看答案和解析>>

同步練習(xí)冊答案