如圖,已知直線y=kx-6與拋物線y=ax2+bx+c相交于A,B兩點,且點A(1,-4)為拋物線的頂點,點B在x軸上.
(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;
(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標.

【答案】分析:(1)已知點A坐標可確定直線AB的解析式,進一步能求出點B的坐標.點A是拋物線的頂點,那么可以將拋物線的解析式設為頂點式,再代入點B的坐標,依據(jù)待定系數(shù)法可解.
(2)首先由拋物線的解析式求出點C的坐標,在△POB和△POC中,已知的條件是公共邊OP,若OB與OC不相等,那么這兩個三角形不能構成全等三角形;若OB等于OC,那么還要滿足的條件為:∠POC=∠POB,各自去掉一個直角后容易發(fā)現(xiàn),點P正好在第二象限的角平分線上,聯(lián)立直線y=-x與拋物線的解析式,直接求交點坐標即可,同時還要注意點P在第二象限的限定條件.
(3)分別以A、B、Q為直角頂點,分類進行討論.找出相關的相似三角形,依據(jù)對應線段成比例進行求解即可.
解答:解:(1)把A(1,-4)代入y=kx-6,得k=2,
∴y=2x-6,
令y=0,解得:x=3,
∴B的坐標是(3,0).
∵A為頂點,
∴設拋物線的解析為y=a(x-1)2-4,
把B(3,0)代入得:4a-4=0,
解得a=1,
∴y=(x-1)2-4=x2-2x-3.

(2)存在.∵OB=OC=3,OP=OP,∴當∠POB=∠POC時,△POB≌△POC,
此時PO平分第二象限,即PO的解析式為y=-x.
設P(m,-m),則-m=m2-2m-3,解得m=(m=>0,舍),
∴P(,).

(3)①如圖,當∠Q1AB=90°時,△DAQ1∽△DOB,
=,即=,∴DQ1=,
∴OQ1=,即Q1(0,);
②如圖,當∠Q2BA=90°時,△BOQ2∽△DOB,
=,即=,
∴OQ2=,即Q2(0,);
③如圖,當∠AQ3B=90°時,作AE⊥y軸于E,
則△BOQ3∽△Q3EA,
=,即=,
∴OQ32-4OQ3+3=0,∴OQ3=1或3,
即Q3(0,-1),Q4(0,-3).
綜上,Q點坐標為(0,)或(0,)或(0,-1)或(0,-3).
點評:本題主要考查了利用待定系數(shù)法求函數(shù)解析式的方法、直角三角形的判定、全等三角形與相似三角形應用等重點知識.(3)題較為復雜,需要考慮的情況也較多,因此要分類進行討論.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

16、如圖,已知直線AB和CD相交于點O,∠COE是直角,OF平分∠AOE.
(1)寫出∠AOC與∠BOD的大小關系:
相等
,判斷的依據(jù)是
等角的補角相等
;
(2)若∠COF=35°,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、如圖,已知直線l1∥l2,AB⊥CD,∠1=30°,則∠2的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知直線l1y=
2
3
x+
8
3
與直線 l2:y=-2x+16相交于點C,直線l1、l2分別交x軸于A、B兩點,矩形DEFG的頂點D、E分別在l1、l2上,頂點F、G都在x軸上,且點G與B點重合,那么S矩形DEFG:S△ABC=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•懷化)如圖,已知直線a∥b,∠1=35°,則∠2=
35°
35°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直線m∥n,則下列結論成立的是(  )

查看答案和解析>>

同步練習冊答案