【題目】如圖,在ABC中,ACBC,∠ACB90°,⊙O(圓心OABC內(nèi)部)經(jīng)過B、C兩點(diǎn),并交AB于點(diǎn)E,過點(diǎn)E作⊙O的切線交AC于點(diǎn)F.延長(zhǎng)COAB于點(diǎn)G,作EDACCG于點(diǎn)D.

1)求證:四邊形CDEF是平行四邊形;

2)若BC3,2,求BG的值.

【答案】1)見解析;(2BG

【解析】

1)先證明∠COE2B90°,根據(jù)EF是⊙O的切線,得到EFOC,又DECF,可得到四邊形CDEF是平行四邊形;

2)過GGNBCN

tanEDOtanCGN2,CN2GN,CN+BN2GN+GN3GN1,得到

BGGN

1)∵在△ABC中,ACBC,∠ACB90°,

∴∠B45°,

∴∠COE2B90°,

EF是⊙O的切線,

∴∠FEO90°,

EFOC,

DECF,

∴四邊形CDEF是平行四邊形;

2)過GGNBCN

∴△GNB是等腰直角三角形,

NBGN

∵四邊形CDEF是平行四邊形,

∴∠FCD=∠FED,

∵∠ACD+GCB=∠GCB+CGN90°,

∴∠CGN=∠ACD

∴∠CGN=∠DEF,

2

tanEDOtanCGN2,

CN2GN,

CN+BN2GN+GN3

GN1,

BGGN

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線yax+b與雙曲線yx0)交于Ax1,y1),Bx2,y2)兩點(diǎn),點(diǎn)A與點(diǎn)B不重合,直線ABx軸交于點(diǎn)Px00),與y軸交于點(diǎn)C.

1)若AB兩點(diǎn)坐標(biāo)分別為(1,4),(4,y2),求點(diǎn)P的坐標(biāo);

2)若by1+1,x06,且y12y2,求A,B兩點(diǎn)的坐標(biāo);

3)若將(1)中的點(diǎn)AB繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,A點(diǎn)對(duì)應(yīng)的點(diǎn)為A,B點(diǎn)的對(duì)應(yīng)點(diǎn)為B點(diǎn),連接AB,AB,動(dòng)點(diǎn)MA點(diǎn)出發(fā)沿線段AB以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng);動(dòng)點(diǎn)N同時(shí)從B點(diǎn)出發(fā)沿線段BA以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)A運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,試探究:是否存在使MNB為等腰直角三角形的t值,若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊(duì)各10人的比賽成績(jī)?nèi)缦卤恚?/span>10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

1)甲隊(duì)成績(jī)的中位數(shù)是   分,乙隊(duì)成績(jī)的眾數(shù)是   分;

2)計(jì)算乙隊(duì)的平均成績(jī)和方差;

3)已知甲隊(duì)成績(jī)的方差是1.4,則成績(jī)較為整齊的是   隊(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=16cm,BC=6cm,點(diǎn)P從點(diǎn)A出發(fā)沿AB向點(diǎn)B移動(dòng)(不與點(diǎn)A、B重合),一直到達(dá)點(diǎn)B為止;同時(shí),點(diǎn)Q從點(diǎn)C出發(fā)沿CD向點(diǎn)D移動(dòng)(不與點(diǎn)C、D重合).運(yùn)動(dòng)時(shí)間設(shè)為t秒.

1)若點(diǎn)PQ均以3cm/s的速度移動(dòng),則:AP=  cmQC=  cm.(用含t的代數(shù)式表示)

2)若點(diǎn)P3cm/s的速度移動(dòng),點(diǎn)Q2cm/s的速度移動(dòng),經(jīng)過多長(zhǎng)時(shí)間PD=PQ,使△DPQ為等腰三角形?

3)若點(diǎn)P、Q均以3cm/s的速度移動(dòng),經(jīng)過多長(zhǎng)時(shí)間,四邊形BPDQ為菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。

(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;

(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象與x軸相交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸相交于點(diǎn)C(0,﹣3).

(1)求這個(gè)二次函數(shù)的表達(dá)式;

(2)若P是第四象限內(nèi)這個(gè)二次函數(shù)的圖象上任意一點(diǎn),PHx軸于點(diǎn)H,與BC交于點(diǎn)M,連接PC.

①求線段PM的最大值;

②當(dāng)PCM是以PM為一腰的等腰三角形時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點(diǎn)D.

(1)求證:BE=CF.

(2)當(dāng)四邊形ACDE為菱形時(shí),求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,要設(shè)計(jì)一本書的封面,封面長(zhǎng)27cm,寬21cm,正中央是一個(gè)與整個(gè)封面長(zhǎng)寬比例相同的長(zhǎng)方形,如果要使四周的彩色邊襯所占面積是封面面積的四分之一,上、下邊襯等寬,左、右邊襯等寬,應(yīng)如何設(shè)計(jì)四周邊襯的寬度(結(jié)果保留根號(hào))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知P是⊙O外一點(diǎn),PO交圓O于點(diǎn)C,OC=CP=2,弦ABOC,劣弧AB的度數(shù)為120°,連接PB.

(1)求BC的長(zhǎng);

(2)求證:PB是⊙O的切線.

查看答案和解析>>

同步練習(xí)冊(cè)答案