【題目】如圖,分別以Rt△ABC的斜邊AB,直角邊AC為邊向外作等邊△ABD和△ACE,F為AB的中點,DE,AB相交于點G.連接EF,若∠BAC=30°,下列結論:①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④△DBF≌△EFA.則正確結論的序號是( 。
A.①③B.②④C.①③④D.②③④
【答案】C
【解析】
根據(jù)直角三角形斜邊上的中線等于斜邊的一半,可得FA=FC,根據(jù)等邊三角形的性質可得EA=EC,根據(jù)線段垂直平分線的判定可得EF是線段AC的垂直平分線;根據(jù)條件及等邊三角形的性質可得∠DFA=∠EAF=90°,DA⊥AC,從而得到DF∥AE,DA∥EF,可得到四邊形ADFE為平行四邊形而不是菱形;根據(jù)平行四邊形的對角線互相平分可得AD=AB=2AF=4AG;易證DB=DA=EF,∠DBF=∠EFA=60°,BF=FA,即可得到△DBF≌△EFA.
連接FC,如圖所示:
∵∠ACB=90°,F為AB的中點,
∴FA=FB=FC,
∵△ACE是等邊三角形,
∴EA=EC,
∵FA=FC,EA=EC,
∴點F、點E都在線段AC的垂直平分線上,
∴EF垂直平分AC,即EF⊥AC;
∵△ABD和△ACE都是等邊三角形,F為AB的中點,
∴DF⊥AB即∠DFA=90°,BD=DA=AB=2AF,∠DBA=∠DAB=∠EAC=∠ACE=60°.
∵∠BAC=30°,
∴∠DAC=∠EAF=90°,
∴∠DFA=∠EAF=90°,DA⊥AC,
∴DF∥AE,DA∥EF,
∴四邊形ADFE為平行四邊形而不是菱形;
∵四邊形ADFE為平行四邊形,
∴DA=EF,AF=2AG,
∴BD=DA=EF,DA=AB=2AF=4AG;
在△DBF和△EFA中, ,
∴△DBF≌△EFA(SAS);
綜上所述:①③④正確,
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】以四邊形ABCD的邊AB、BC、CD、DA為斜邊分別向外側作等腰直角三角形,直角頂點分別為E、F、G、H,順次連接這四個點,得四邊形EFGH.
(1)如圖1,當四邊形ABCD為正方形時,我們發(fā)現(xiàn)四邊形EFGH是正方形;如圖2,當四邊形ABCD為矩形時,請判斷:四邊形EFGH的形狀(不要求證明);
(2)如圖3,當四邊形ABCD為一般平行四邊形時,設∠ADC=α(0°<α<90°),
①試用含α的代數(shù)式表示∠HAE;
②求證:HE=HG;
③四邊形EFGH是什么四邊形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點,E、F分別是線段BM、CM的中點.
(1)求證:△ABM≌△DCM;
(2)填空:當AB:AD= 時,四邊形MENF是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B都在反比例函數(shù)y=(x>0)的圖像上,過點B作BC∥x軸交y軸于點C,連接AC并延長交x軸于點D,連接BD,DA=3DC,S△ABD=6.則k的值為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形 ABCD 中,AB=4,點 E為邊AD上一動點,連接 CE,以 CE為邊,作正方形CEFG(點D、F在CE所在直線的同側),H為CD中點,連接 FH.
(1)如圖 1,連接BE,BH,若四邊形 BEFH 為平行四邊形,求四邊形 BEFH 的周長;
(2)如圖 2,連接 EH,若 AE=1,求△EHF 的面積;
(3)直接寫出點E在運動過程中,HF的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上三點M,O,N對應的數(shù)分別為-3,0,1,點P為數(shù)軸上任意一點,其對應的數(shù)為x.
(1)如果點P到點M,點N的距離相等,那么x的值是______;
(2)數(shù)軸上是否存在點P,使點P到點M,點N的距離之和是5?若存在,請直接寫出x的值;若不存在,請說明理由.
(3)如果點P以每分鐘3個單位長度的速度從點O向左運動時,點M和點N分別以每分鐘1個單位長度和每分鐘4個單位長度的速度也向左運動,且三點同時出發(fā),那么幾分鐘時點P到點M,點N的距離相等.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知m,n是實數(shù),定義運算“*”為:m*n=mn+n.
(1)分別求4*(﹣2)與4*的值;
(2)若關于x的方程x*(a*x)=﹣有兩個相等的實數(shù)根,求實數(shù)a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了豐富校園文化,促進學生全面發(fā)展.我市某區(qū)教育局在全區(qū)中小學開展“書法、武術、黃梅戲進校園”活動。今年3月份,該區(qū)某校舉行了“黃梅戲”演唱比賽,比賽成績評定為A,B,C,D,E五個等級,該校部分學生參加了學校的比賽,并將比賽結果繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息,解答下列問題.
(1)求該校參加本次“黃梅戲”演唱比賽的學生人數(shù);
(2)求扇形統(tǒng)計圖B等級所對應扇形的圓心角度數(shù);
(3)已知A等級的4名學生中有1名男生,3名女生,現(xiàn)從中任意選取2名學生作為全校訓練的示范者,請你用列表法或畫樹狀圖的方法,求出恰好選1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(8分)快、慢兩車分別從相距360千米路程的甲、乙兩地同時出發(fā),勻速行駛,先相向而行,快車到達乙地后,停留1小時,然后按原路原速返回,快車比慢車晚1小時到達甲地,快、慢兩車距各自出發(fā)地的路程y(千米)與出發(fā)后所用的時間x(小時)的關系如圖.
請結合圖象信息解答下列問題:
(1)慢車的速度是 千米/小時,快車的速度是 千米/小時;
(2)求m的值,并指出點C的實際意義是什么?
(3)在快車按原路原速返回的過程中,快、慢兩車相距的路程為150千米時,慢車行駛了多少小時?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com