【題目】在△ABC中,AB=AC,∠BAC=90°,點(diǎn)D在射線BC上(與B、C兩點(diǎn)不重合),以AD為邊作正方形ADEF,使點(diǎn)E與點(diǎn)B在直線AD的異側(cè),射線BA與射線CF相交于點(diǎn)G.
(1)若點(diǎn)D在線段BC上,如圖1.
①依題意補(bǔ)全圖1;
②判斷BC與CG的數(shù)量關(guān)系與位置關(guān)系,并加以證明;
(2)若點(diǎn)D在線段BC的延長(zhǎng)線上,且G為CF中點(diǎn),連接GE,AB=,則GE的長(zhǎng)為_____,并簡(jiǎn)述求GE長(zhǎng)的思路.
【答案】(1)①見(jiàn)解析;②BC=CG,理由見(jiàn)解析; (2)
【解析】試題分析: (1)①依題意補(bǔ)全圖形,如圖1所示,②判斷出△BAD≌△CAF即可;
(2)先判斷出△BAD≌△CAF,得到BD=CF,BG⊥CF,得到直角三角形,利用勾股定理計(jì)算即可.
試題解析:
(1)證明:①依題意補(bǔ)全圖形,如圖1所示,
②BC⊥CG,BC=CG;
∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAC=∠BAD+∠DAC=90°,
∠DAF=∠CAF+∠DAC=90°,
∴∠BAD=∠CAF,
在△BAD和△CAF中,
∴△BAD≌△CAF(SAS),
∴∠ACF=∠ABD=45°,
∴∠ACF+∠ACB=90°,
∴BC⊥CG;
∵點(diǎn)G是BA延長(zhǎng)線上的點(diǎn),
BC=CG
(2)如圖,
∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAC=∠BAD﹣∠DAC=90°,
∠DAF=∠CAF﹣∠DAC=90°,
∴∠BAD=∠CAF,
在△BAD和△CAF中,
∴△BAD≌△CAF(SAS),
∴∠ACF=∠ABD=45°,BD=CF,
∴∠ACF+∠ACB=90°,
∴BC⊥CF;
∵AB=,BC=CD=CG=GF=2,
∴在Rt△AGH中,根據(jù)勾股定理得,AG=,
∴在Rt△AGH中,根據(jù)勾股定理的,DG=2,
∵AD=,
∴AH=,HG=,
∴GI=AD﹣HG=,
∴GE==
故答案為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( )
A.x2+x3=x5
B.x8÷x2=x4
C.3x﹣2x=1
D.(x2)3=x6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=BC,D為BC中點(diǎn),CE⊥AD于E,BF∥AC交CE的延長(zhǎng)線于F.
(1)求證:△ACD≌△CBF;
(2)求證:AB垂直平分DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD=BD=BC,則∠A的度數(shù)是( )
A.30°
B.36°
C.45°
D.20°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( )
A.a2a3=a6
B.a8÷a4=a2
C.a3+a3=2a6
D.(a3)2=a6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】找規(guī)律:21-20=20 ;22-21=21 ;23-22=2 2;………利用你的發(fā)現(xiàn),求20+21+22+23+…+22018+22019的值是( )
A. 22019 -1B. 22019 +1C. 22020 -1D. 22020 +1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知B(2,1),AB∥y軸,且AB=4,則A的坐標(biāo)是( )
A. (2,-3)B. (2,5)C. (2,-3)或(2,5)D. (6,1)或(-2,1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com