【題目】如圖,在正方形ABCD中,過(guò)B作一直線與CD相交于點(diǎn)E,過(guò)A作AF垂直BE于點(diǎn)F,過(guò)C作CG垂直BE于點(diǎn)G,在FA上截取FH=FB,再過(guò)H作HP垂直AF交AB于P.若CG=3.則△CGE與四邊形BFHP的面積之和為 _________ .
【答案】9.
【解析】
試題由ABCD為正方形,根據(jù)正方形的性質(zhì)得到AB=BC,∠ABC=90°,即∠CBG+∠ABF=90°,又根據(jù)CG與BE垂直得到∠BCG+∠CBG=90°,根據(jù)同角的余角相等得到一對(duì)角相等,又根據(jù)一對(duì)直角相等,利用“AAS”即可得到三角形BCG與三角形FBA全等,根據(jù)全等三角形的對(duì)應(yīng)邊相等得到AF與BG相等,又因?yàn)?/span>FH=FB,從而得到AH=FG,然后由垂直得到一對(duì)直角相等,加上一個(gè)公共角,得到三角形APH與三角形ABF相似,根據(jù)相似得比例,設(shè)AH=FG=x,用x表示出PH,由四邊形PHFB一組對(duì)邊平行,另一組對(duì)邊不平行得到此四邊形為梯形,根據(jù)梯形的面積公式,由上底PH,下底為BF=3,高FH=3,表示出梯形的面積;然后在三角形BCG與三角形ECG中,根據(jù)同角的余角相等,再加上一對(duì)直角得到兩三角形相似,根據(jù)相似得比例,用含x的式子表示出GE,由CG=3,利用表示出的GE,利用三角形的面積公式表示出直角三角形CGE的面積,把表示出的兩面積相加,化簡(jiǎn)即可得到值.
試題解析:∵四邊形ABCD為正方形,
∴AB=BC,∠ABC=90°,即∠CBG+∠ABF=90°,
又CG⊥BE,即∠BGC=90°,
∴∠BCG+∠CBG=90°,
∴∠ABF=∠BCG,
又AF⊥BG,
∴∠AFB=∠BGC=90°,
∴△ABF≌△BCG,
∴AF=BG,BF=CG=FH=3,
又∵FH=BF,
∴AH=FG,設(shè)AH=FG=x,
∵PH⊥AF,BF⊥AF,
∴∠AHP=∠AFB=90°,又∠PAH為公共角,
∴△APH∽△ABF,
∴,即PH=,
∵FH∥BF,BP不平行FH,
∴四邊形BFHP為梯形,其面積為;
又∵∠BCG+∠ECG=90°,∠ECG+∠BEC=90°,
∴∠BCG=∠BEC,又∠BGC=∠CGE=90°,
∴△BCG∽△CEG,
∴,即GE=,
故Rt△CGE的面積為×3×,
則△CGE與四邊形BFHP的面積之和為.
考點(diǎn): 1.正方形的判定與性質(zhì);2.全等三角形的判定與性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB:BC:CD:DA=2:2:3:1,且∠ABC=90°,則∠DAB的度數(shù)是______°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),,且,滿足,點(diǎn)為上一個(gè)動(dòng)點(diǎn)(不與,)重合),連接.
圖1 圖2
(1)直接寫(xiě)出 ___________,___________;
(2)如圖1,過(guò)點(diǎn)作的垂線交過(guò)點(diǎn)平行于軸的直線于點(diǎn),若點(diǎn),
求點(diǎn)的坐標(biāo);
(3)如圖2,以為斜邊在右側(cè)作等腰,.連接,當(dāng)點(diǎn)從向運(yùn)動(dòng)過(guò)程中,的面積是否發(fā)生變化,請(qǐng)判斷并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人加工同一種零件,甲每天加工的數(shù)量是乙每天加工數(shù)量的 1.5 倍,兩人各加工 600 個(gè)這種零件,甲比乙少用 5 天.
(1)求甲、乙兩人每天各加工多少個(gè)這種零件?
(2)已知甲、乙兩人加工這種零件每天的加工費(fèi)分別是 150 元和 120 元,現(xiàn)有 3000 個(gè)這種零件的加工任務(wù),甲單獨(dú)加工一段時(shí)間后另有安排,剩余任務(wù)由乙單獨(dú)完成.如果總加工費(fèi)不超過(guò) 7800 元,那么甲至少加工了多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫(xiě)出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小組做“用頻率估計(jì)概率”的實(shí)驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線圖,則符合這一結(jié)果的實(shí)驗(yàn)最有可能的是( 。
A. 在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”
B. 擲一枚質(zhì)地均勻的正六面體骰子,向上一面的點(diǎn)數(shù)是4
C. 一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌,抽中紅桃
D. 拋擲一枚均勻的硬幣,前2次都正面朝上,第3次正面仍朝上
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A(m,m+1),B(m+1,2m-3)都在反比例函數(shù)的圖象上.
(1)求m,k的值;
(2)如果M為x軸上一點(diǎn),N為y軸上一點(diǎn), 以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形,試求直線MN的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,矩形ABCD中,點(diǎn)E是邊AD上動(dòng)點(diǎn),點(diǎn)F是邊BC上動(dòng)點(diǎn),連接EF,把矩形ABCD沿直線EF折疊,點(diǎn)B恰好落在邊AD上,記為點(diǎn)G;如圖2,把矩形展開(kāi)鋪平,連接BE,FG.
(1)判斷四邊形BEGF的形狀一定是 ,請(qǐng)證明你的結(jié)論;
(2)若矩形邊AB=4,BC=8,直接寫(xiě)出四邊形BEGF面積的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平行四邊形在平面直角坐標(biāo)系中的位置如圖所示,,,AC=4,把平行四邊形繞點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)落在軸上,則旋轉(zhuǎn)后點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com