【題目】如圖,ABC的外角∠ACD的平分線CP與∠ABC平分線BP交于點(diǎn)P,若∠BPC=40°,則∠CAP的度數(shù)是(

A. 30°; B. 40°; C. 50°; D. 60°.

【答案】C

【解析】過點(diǎn)PPE⊥BD于點(diǎn)E,PF⊥BA于點(diǎn)F,PH⊥AC于點(diǎn)H,

∵CP平分∠ACD,BP平分∠ABC,

PE=PH,PE=PF,PCD=ACD,PBC=ABC

∴PH=PF,

點(diǎn)P在∠CAF的角平分線上,

∴AP平分∠FAC,

∴∠CAP=CAF.

∵∠PCD=∠BPC+∠PBC,

∴∠ACD=2∠BPC+2∠PBC,

又∵∠ACD=∠ABC+∠BAC,∠ABC=2∠PBC,∠BPC=40°,

∴∠ABC+∠BAC=∠ABC+80°,

∴∠BAC=80°

∴∠CAF=180°-80°=100°

∴∠CAP=100°×=50°.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級(jí)學(xué)生在學(xué)習(xí)《數(shù)據(jù)的分析》后,進(jìn)行了檢測(cè),現(xiàn)將該校八(1)班學(xué)生的成績(jī)統(tǒng)計(jì)如下表,并繪制成條形統(tǒng)計(jì)圖(不完整).

分?jǐn)?shù)(分)

人數(shù)(人)

68

4

78

7

80

3

88

5

90

10

96

6

100

5


(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)該班學(xué)生成績(jī)的平均數(shù)為86.85分,寫出該班學(xué)生成績(jī)的中位數(shù)和眾數(shù);
(3)該校八年級(jí)共有學(xué)生500名,估計(jì)有多少學(xué)生的成績(jī)?cè)?6分以上(含96分)?
(4)小明的成績(jī)?yōu)?8分,他的成績(jī)?nèi)绾,為什么?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)(5,﹣3)所在的象限是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)正數(shù)的平方根是2a+1和﹣a+2,則a_____,這個(gè)正數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB10,AC2,BC邊上的高AD6,則另一邊BC等于_______

【答案】106

【解析】試題解析:根據(jù)題意畫出圖形,如圖所示,

如圖1所示,AB=10,AC=2,AD=6,

在RtABD和RtACD中,

根據(jù)勾股定理得:BD==8,CD==2,

此時(shí)BC=BD+CD=8+2=10;

如圖2所示,AB=10,AC=2,AD=6,

在RtABD和RtACD中,

根據(jù)勾股定理得:BD==8,CD==2,

此時(shí)BC=BD-CD=8-2=6,

BC的長(zhǎng)為6或10.

型】填空
結(jié)束】
12

【題目】在平面直角坐標(biāo)系中,已知一次函數(shù)y=2x+1的圖象經(jīng)過P1(x1,y1)、P2(x2,y2)兩點(diǎn),若x1<x2,則y1 ______ y2.(填“>”“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣4,0)兩點(diǎn),

(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸于C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)設(shè)此拋物線與直線y=﹣x在第二象限交于點(diǎn)D,平行于y軸的直線 與拋物線交于點(diǎn)M,與直線y=﹣x交于點(diǎn)N,連接BM、CM、NC、NB,是否存在m的值,使四邊形BNCM的面積S最大?若存在,請(qǐng)求出m的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB=90°,AC=BC=4,點(diǎn)DAB的中點(diǎn),MN分別在BC,AC上,且BM=CN現(xiàn)有以下四個(gè)結(jié)論:

DN=DM; NDM=90°; 四邊形CMDN的面積為4; ④△CMN的面積最大為2.

其中正確的結(jié)論有(

A. ①②④; B. ①②③; C. ②③④ D. ①②③④.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O是以BC為直徑的△ABC的外接圓,OP∥AC,且與BC的垂線交于點(diǎn)P,OP交AB于點(diǎn)D,BC、PA的延長(zhǎng)線交于點(diǎn)E.
(1)求證:PA是⊙O的切線;
(2)若sinE= ,PA=6,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)C按如圖所示的方式疊放在一起.

,則的度數(shù)為______;

,求的度數(shù);

猜想之間存在什么數(shù)量關(guān)系?并說明理由;

當(dāng)且點(diǎn)E在直線AC的上方時(shí),這兩塊三角尺是否存在ADBC平行的情況?若存在,請(qǐng)直接寫出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案