【題目】已知實(shí)數(shù)a,b滿足(2a+1)2+|a+b+1|=0,且關(guān)于x,y的方程組的解x<0,y>0,求m的取值范圍.
【答案】解:∵(2a+1)2+|a+b+1|=0,
∴2a+1=0,a+b+1=0,
解得:a= , b= ,
代入方程組得: ,
解得:x= , y= ,
, ∵x<0,y>0,
∴ ,
解不等式組得:<m<1,
即m的取值范圍是:<m<1.
【解析】根據(jù)偶次方,絕對值得出2a+1=0,a+b+1=0,求出a、b的值,代入方程組得出關(guān)于x、y的方程組,求出法則的解,根據(jù)x<0,y>0得出關(guān)于m的不等式組,求出不等式組的解集即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二元一次方程的解和一元一次不等式組的解法的相關(guān)知識可以得到問題的答案,需要掌握適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解;解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 ).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解方程x2﹣2x﹣2=0,原方程應(yīng)變形為( )
A. (x+1)2=3B. (x﹣1)2=3C. (x+1)2=1D. (x﹣1)2=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a<b,則ac>bc成立,那么c應(yīng)該滿足的條件是( )
A. c>0 B. c<0 C. c≥0 D. c≤0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB為直角,AB=10,°,半徑為1的動圓Q的圓心從點(diǎn)C出發(fā),沿著CB方向以1個單位長度/秒的速度勻速運(yùn)動,同時動點(diǎn)P從點(diǎn)B出發(fā),沿著BA方向也以1個單位長度/秒的速度勻速運(yùn)動,設(shè)運(yùn)動時間為t秒(0<t≤5)以P為圓心,PB長為半徑的⊙P與AB、BC的另一個交點(diǎn)分別為E、D,連結(jié)ED、EQ.
(1)判斷并證明ED與BC的位置關(guān)系,并求當(dāng)點(diǎn)Q與點(diǎn)D重合時t的值;
(2)當(dāng)⊙P和AC相交時,設(shè)CQ為,⊙P被AC 截得的弦長為,求關(guān)于的函數(shù); 并求當(dāng)⊙Q過點(diǎn)B時⊙P被AC截得的弦長;
(3)若⊙P與⊙Q相交,寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠A,∠B,∠C的對邊分別記為a,b,c,由下列條件不能判定△ABC為直角三角形的是( )
A. ∠A+∠B=∠C B. ∠A:∠B:∠C=1:2:3
C. a2=c2﹣b2 D. a:b:c=3:4:6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠BAD的平分線與BC的延長線交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),DG⊥AE,垂足為G,若DG=1,EF=2 ,則AB的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把方程x2﹣8x+3=0配方成如下的形式,則正確是( )
A.(x+4)2=13
B.(x﹣4)2=19
C.(x﹣4)2=13
D.(x+4)2=19
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(2,6),點(diǎn)B的坐標(biāo)為(n,1).
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)點(diǎn)E為y軸上一個動點(diǎn),若S△AEB=5,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com