如圖,在Rt△ABC中,AB是斜邊,點P在中線CD上,AC=3cm,BC=4cm,設(shè)P、C的距離為xcm,△APB的面積為ycm2,求y與x的函數(shù)關(guān)系式及自變量x的取值范圍.

解:在Rt△ABC中,AB===5,
∵AD=BD,∴CD=AB=,
∵PC的長為x,∴PD=-x,
過P點作PH⊥AB交AB于H,過C點作CM⊥AB交AB于M,
∵△ACB∽△AMC
=,∴CM==,
∵CM⊥AB,PH⊥AB,∴CM∥BH,
=,∴PH===-x.
S△APB=y=AB•BH=×5×(-x),
∴y=-x+6,
∴0<x<
答:y與x的函數(shù)關(guān)系式是y=-x+6,
自變量x的取值范圍為0<x<
分析:根據(jù)勾股定理求出AB的長,然后過P點作PH⊥AB交AB于H,過C點作CM⊥AB交AB于M,求證△ACB∽△AMC,利用其對應(yīng)邊成比例求得CM的長,再利用CM∥BH,求出PH,代入即可.
點評:此題主要考查學(xué)生對相似三角形的判定與性質(zhì)、根據(jù)實際問題列一次函數(shù)關(guān)系式、勾股定理和直角三角形斜邊上的中線等知識點的理解和掌握,此題涉及到的知識點較多,綜合性強,難度大,屬于難題.解答此題的關(guān)鍵是過P點作PH⊥AB交AB于H,過C點作CM⊥AB交AB于M,求證△ACB∽△AMC.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當(dāng)點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設(shè)點P的運動時間為t(s).
(1)當(dāng)點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點N落在AB邊上時,求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案